Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
### v1.0.0 (30/1/2020)
This release mainly improves the code quality and add more docstrings.
**Highlights**
- Documentation is online now: https://mmdetection.readthedocs.io.
- Support new models: [ATSS](https://arxiv.org/abs/1912.02424).
- DCN is now available with the api `build_conv_layer` and `ConvModule` like the normal conv layer.
- A tool to collect environment information is available for trouble shooting.
**Bug Fixes**
- Fix the incompatibility of the latest numpy and pycocotools. (#2024)
- Fix the case when distributed package is unavailable, e.g., on Windows. (#1985)
- Fix the dimension issue for `refine_bboxes()`. (#1962)
- Fix the typo when `seg_prefix` is a list. (#1906)
- Add segmentation map cropping to RandomCrop. (#1880)
- Fix the return value of `ga_shape_target_single()`. (#1853)
- Fix the loaded shape of empty proposals. (#1819)
- Fix the mask data type when using albumentation. (#1818)
**Improvements**
- Enhance AssignResult and SamplingResult. (#1995)
- Add ability to overwrite existing module in Registry. (#1982)
- Reorganize requirements and make albumentations and imagecorruptions optional. (#1969)
- Check NaN in `SSDHead`. (#1935)
- Encapsulate the DCN in ResNe(X)t into a ConvModule & Conv_layers. (#1894)
- Refactoring for mAP evaluation and support multiprocessing and logging. (#1889)
- Init the root logger before constructing Runner to log more information. (#1865)
- Split `SegResizeFlipPadRescale` into different existing transforms. (#1852)
- Move `init_dist()` to MMCV. (#1851)
- Documentation and docstring improvements. (#1971, #1938, #1869, #1838)
- Fix the color of the same class for mask visualization. (#1834)
- Remove the option `keep_all_stages` in HTC and Cascade R-CNN. (#1806)
**New Features**
- Add two test-time options `crop_mask` and `rle_mask_encode` for mask heads. (#2013)
- Support loading grayscale images as single channel. (#1975)
- Implement "Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection". (#1872)
- Add sphinx generated docs. (#1859, #1864)
- Add GN support for flops computation. (#1850)
- Collect env info for trouble shooting. (#1812)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
### v1.0rc1 (13/12/2019)
The RC1 release mainly focuses on improving the user experience, and fixing bugs.
**Highlights**
- Support new models: [FoveaBox](https://arxiv.org/abs/1904.03797), [RepPoints](https://arxiv.org/abs/1904.11490) and [FreeAnchor](https://arxiv.org/abs/1909.02466).
- Add a Dockerfile.
- Add a jupyter notebook demo and a webcam demo.
- Setup the code style and CI.
- Add lots of docstrings and unit tests.
- Fix lots of bugs.
**Breaking Changes**
- There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621. (#1679)
**Bug Fixes**
- Fix a sampling interval bug in Libra R-CNN. (#1800)
- Fix the learning rate in SSD300 WIDER FACE. (#1781)
- Fix the scaling issue when `keep_ratio=False`. (#1730)
- Fix typos. (#1721, #1492, #1242, #1108, #1107)
- Fix the shuffle argument in `build_dataloader`. (#1693)
- Clip the proposal when computing mask targets. (#1688)
- Fix the "index out of range" bug for samplers in some corner cases. (#1610, #1404)
- Fix the NMS issue on devices other than GPU:0. (#1603)
- Fix SSD Head and GHM Loss on CPU. (#1578)
- Fix the OOM error when there are too many gt bboxes. (#1575)
- Fix the wrong keyword argument `nms_cfg` in HTC. (#1573)
- Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)
- Fix a scale bug in the Non Local op. (#1528)
- Fix a bug in transforms when `gt_bboxes_ignore` is None. (#1498)
- Fix a bug when `img_prefix` is None. (#1497)
- Pass the device argument to `grid_anchors` and `valid_flags`. (#1478)
- Fix the data pipeline for test_robustness. (#1476)
- Fix the argument type of deformable pooling. (#1390)
- Fix the coco_eval when there are only two classes. (#1376)
- Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)
- Fix the mask cropping in RandomCrop. (#1333)
- Fix zero outputs in DeformConv when not running on cuda:0. (#1326)
- Fix the type issue in Expand. (#1288)
- Fix the inference API. (#1255)
- Fix the inplace operation in Expand. (#1249)
- Fix the from-scratch training config. (#1196)
- Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)
- Fix FCOS when input images has no positive sample. (#1136)
- Fix recursive imports. (#1099)
**Improvements**
- Print the config file and mmdet version in the log. (#1721)
- Lint the code before compiling in travis CI. (#1715)
- Add a probability argument for the `Expand` transform. (#1651)
- Update the PyTorch and CUDA version in the docker file. (#1615)
- Raise a warning when specifying `--validate` in non-distributed training. (#1624, #1651)
- Beautify the mAP printing. (#1614)
- Add pre-commit hook. (#1536)
- Add the argument `in_channels` to backbones. (#1475)
- Add lots of docstrings and unit tests, thanks to [@Erotemic](https://github.com/Erotemic). (#1603, #1517, #1506, #1505, #1491, #1479, #1477, #1475, #1474)
- Add support for multi-node distributed test when there is no shared storage. (#1399)
- Optimize Dockerfile to reduce the image size. (#1306)
- Update new results of HRNet. (#1284, #1182)
- Add an argument `no_norm_on_lateral` in FPN. (#1240)
- Test the compiling in CI. (#1235)
- Move docs to a separate folder. (#1233)
- Add a jupyter notebook demo. (#1158)
- Support different type of dataset for training. (#1133)
- Use int64_t instead of long in cuda kernels. (#1131)
- Support unsquare RoIs for bbox and mask heads. (#1128)
- Manually add type promotion to make compatible to PyTorch 1.2. (#1114)
- Allowing validation dataset for computing validation loss. (#1093)
- Use `.scalar_type()` instead of `.type()` to suppress some warnings. (#1070)
**New Features**
- Add an option `--with_ap` to compute the AP for each class. (#1549)
- Implement "FreeAnchor: Learning to Match Anchors for Visual Object Detection". (#1391)
- Support [Albumentations](https://github.com/albumentations-team/albumentations) for augmentations in the data pipeline. (#1354)
- Implement "FoveaBox: Beyond Anchor-based Object Detector". (#1339)
- Support horizontal and vertical flipping. (#1273, #1115)
- Implement "RepPoints: Point Set Representation for Object Detection". (#1265)
- Add test-time augmentation to HTC and Cascade R-CNN. (#1251)
- Add a COCO result analysis tool. (#1228)
- Add Dockerfile. (#1168)
- Add a webcam demo. (#1155, #1150)
- Add FLOPs counter. (#1127)
- Allow arbitrary layer order for ConvModule. (#1078)
### v1.0rc0 (27/07/2019)
- Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided Anchoring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight Standardization, etc.). Thank all collaborators!
- Support two additional datasets: WIDER FACE and Cityscapes.
- Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.
- Speed up multi-gpu testing.
- Integrate all compiling and installing in a single script.
### v0.6.0 (14/04/2019)
- Up to 30% speedup compared to the model zoo.
- Support both PyTorch stable and nightly version.
- Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.
### v0.6rc0(06/02/2019)
- Migrate to PyTorch 1.0.
### v0.5.7 (06/02/2019)
- Add support for Deformable ConvNet v2. (Many thanks to the authors and [@chengdazhi](https://github.com/chengdazhi))
- This is the last release based on PyTorch 0.4.1.
### v0.5.6 (17/01/2019)
- Add support for Group Normalization.
- Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.
### v0.5.5 (22/12/2018)
- Add SSD for COCO and PASCAL VOC.
- Add ResNeXt backbones and detection models.
- Refactoring for Samplers/Assigners and add OHEM.
- Add VOC dataset and evaluation scripts.
### v0.5.4 (27/11/2018)
- Add SingleStageDetector and RetinaNet.
### v0.5.3 (26/11/2018)
- Add Cascade R-CNN and Cascade Mask R-CNN.
- Add support for Soft-NMS in config files.
### v0.5.2 (21/10/2018)
- Add support for custom datasets.
- Add a script to convert PASCAL VOC annotations to the expected format.
### v0.5.1 (20/10/2018)
- Add BBoxAssigner and BBoxSampler, the `train_cfg` field in config files are restructured.
- `ConvFCRoIHead` / `SharedFCRoIHead` are renamed to `ConvFCBBoxHead` / `SharedFCBBoxHead` for consistency.