@@ -36,51 +36,10 @@ Apart from MMDetection, we also released a library [mmcv](https://github.com/ope
This project is released under the [Apache 2.0 license](LICENSE).
## Updates
## Changelog
v1.0rc0 (27/07/2019)
- Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided Anchoring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight Standardization, etc.). Thank all collaborators!
- Support two additional datasets: WIDER FACE and Cityscapes.
- Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.
- Speed up multi-gpu testing.
- Integrate all compiling and installing in a single script.
v0.6.0 (14/04/2019)
- Up to 30% speedup compared to the model zoo.
- Support both PyTorch stable and nightly version.
- Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.
v0.6rc0(06/02/2019)
- Migrate to PyTorch 1.0.
v0.5.7 (06/02/2019)
- Add support for Deformable ConvNet v2. (Many thanks to the authors and [@chengdazhi](https://github.com/chengdazhi))
- This is the last release based on PyTorch 0.4.1.
v0.5.6 (17/01/2019)
- Add support for Group Normalization.
- Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.
v0.5.5 (22/12/2018)
- Add SSD for COCO and PASCAL VOC.
- Add ResNeXt backbones and detection models.
- Refactoring for Samplers/Assigners and add OHEM.
- Add VOC dataset and evaluation scripts.
v0.5.4 (27/11/2018)
- Add SingleStageDetector and RetinaNet.
v0.5.3 (26/11/2018)
- Add Cascade R-CNN and Cascade Mask R-CNN.
- Add support for Soft-NMS in config files.
v0.5.2 (21/10/2018)
- Add support for custom datasets.
- Add a script to convert PASCAL VOC annotations to the expected format.
v0.5.1 (20/10/2018)
- Add BBoxAssigner and BBoxSampler, the `train_cfg` field in config files are restructured.
-`ConvFCRoIHead` / `SharedFCRoIHead` are renamed to `ConvFCBBoxHead` / `SharedFCBBoxHead` for consistency.
v1.0rc1 was released in 13/12/2019, with more than 20 bug fixes and 30 improvements and new features.
Please refer to [CHANGELOG.md](docs/CHANGELOG.md) for details and history versions.
## Benchmark and model zoo
...
...
@@ -99,12 +58,15 @@ Results and models are available in the [Model zoo](docs/MODEL_ZOO.md).
| RetinaNet | ✓ | ✓ | ☐ | ✗ | ✓ |
| GHM | ✓ | ✓ | ☐ | ✗ | ✓ |
| Mask Scoring R-CNN | ✓ | ✓ | ☐ | ✗ | ✓ |
| FCOS | ✓ | ✓ | ☐ | ✗ | ✓ |
| Double-Head R-CNN | ✓ | ✓ | ☐ | ✗ | ✓ |
| Grid R-CNN (Plus) | ✓ | ✓ | ☐ | ✗ | ✓ |
| Hybrid Task Cascade| ✓ | ✓ | ☐ | ✗ | ✓ |
| Libra R-CNN | ✓ | ✓ | ☐ | ✗ | ✓ |
| Guided Anchoring | ✓ | ✓ | ☐ | ✗ | ✓ |
| FCOS | ✓ | ✓ | ☐ | ✗ | ✓ |
| RepPoints | ✓ | ✓ | ☐ | ✗ | ✓ |
| Foveabox | ✓ | ✓ | ☐ | ✗ | ✓ |
| FreeAnchor | ✓ | ✓ | ☐ | ✗ | ✓ |
Other features
- [x] DCNv2
...
...
@@ -157,4 +119,4 @@ If you use this toolbox or benchmark in your research, please cite this project.
## Contact
This repo is currently maintained by Kai Chen ([@hellock](http://github.com/hellock)), Jiangmiao Pang ([@OceanPang](https://github.com/OceanPang)), Jiaqi Wang ([@myownskyW7](https://github.com/myownskyW7)) and Yuhang Cao ([@yhcao6](https://github.com/yhcao6)).
\ No newline at end of file
This repo is currently maintained by Kai Chen ([@hellock](http://github.com/hellock)), Yuhang Cao ([@yhcao6](https://github.com/yhcao6)), Wenwei Zhang ([@ZwwWayne](https://github.com/ZwwWayne)), Jiangmiao Pang ([@OceanPang](https://github.com/OceanPang)) and Jiaqi Wang ([@myownskyW7](https://github.com/myownskyW7)).
The RC1 release mainly focuses on improving the user experience, and fixing bugs.
**Highlights**
- Support new models: [FoveaBox](https://arxiv.org/abs/1904.03797), [RepPoints](https://arxiv.org/abs/1904.11490) and [FreeAnchor](https://arxiv.org/abs/1909.02466).
- Add a Dockerfile.
- Add a jupyter notebook demo and a webcam demo.
- Setup the code style and CI.
- Add lots of docstrings and unit tests.
- Fix lots of bugs.
**Breaking Changes**
- There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621. (#1679)
**Bug Fixes**
- Fix a sampling interval bug in Libra R-CNN. (#1800)
- Fix the learning rate in SSD300 WIDER FACE. (#1781)
- Fix the scaling issue when `keep_ratio=False`. (#1730)
- Fix typos. (#1721, #1492, #1242, #1108, #1107)
- Fix the shuffle argument in `build_dataloader`. (#1693)
- Clip the proposal when computing mask targets. (#1688)
- Fix the "index out of range" bug for samplers in some corner cases. (#1610, #1404)
- Fix the NMS issue on devices other than GPU:0. (#1603)
- Fix SSD Head and GHM Loss on CPU. (#1578)
- Fix the OOM error when there are too many gt bboxes. (#1575)
- Fix the wrong keyword argument `nms_cfg` in HTC. (#1573)
- Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)
- Fix a scale bug in the Non Local op. (#1528)
- Fix a bug in transforms when `gt_bboxes_ignore` is None. (#1498)
- Fix a bug when `img_prefix` is None. (#1497)
- Pass the device argument to `grid_anchors` and `valid_flags`. (#1478)
- Fix the data pipeline for test_robustness. (#1476)
- Fix the argument type of deformable pooling. (#1390)
- Fix the coco_eval when there are only two classes. (#1376)
- Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)
- Fix the mask cropping in RandomCrop. (#1333)
- Fix zero outputs in DeformConv when not running on cuda:0. (#1326)
- Fix the type issue in Expand. (#1288)
- Fix the inference API. (#1255)
- Fix the inplace operation in Expand. (#1249)
- Fix the from-scratch training config. (#1196)
- Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)
- Fix FCOS when input images has no positive sample. (#1136)
- Fix recursive imports. (#1099)
**Improvements**
- Print the config file and mmdet version in the log. (#1721)
- Lint the code before compiling in travis CI. (#1715)
- Add a probability argument for the `Expand` transform. (#1651)
- Update the PyTorch and CUDA version in the docker file. (#1615)
- Raise a warning when specifying `--validate` in non-distributed training. (#1624, #1651)
- Beautify the mAP printing. (#1614)
- Add pre-commit hook. (#1536)
- Add the argument `in_channels` to backbones. (#1475)
- Add lots of docstrings and unit tests, thanks to [@Erotemic](https://github.com/Erotemic). (#1603, #1517, #1506, #1505, #1491, #1479, #1477, #1475, #1474)
- Add support for multi-node distributed test when there is no shared storage. (#1399)
- Optimize Dockerfile to reduce the image size. (#1306)
- Update new results of HRNet. (#1284, #1182)
- Add an argument `no_norm_on_lateral` in FPN. (#1240)
- Test the compiling in CI. (#1235)
- Move docs to a separate folder. (#1233)
- Add a jupyter notebook demo. (#1158)
- Support different type of dataset for training. (#1133)
- Use int64_t instead of long in cuda kernels. (#1131)
- Support unsquare RoIs for bbox and mask heads. (#1128)
- Manually add type promotion to make compatible to PyTorch 1.2. (#1114)
- Allowing validation dataset for computing validation loss. (#1093)
- Use `.scalar_type()` instead of `.type()` to suppress some warnings. (#1070)
**New Features**
- Add an option `--with_ap` to compute the AP for each class. (#1549)
- Implement "FreeAnchor: Learning to Match Anchors for Visual Object Detection". (#1391)
- Support [Albumentations](https://github.com/albumentations-team/albumentations) for augmentations in the data pipeline. (#1354)