Skip to content
Snippets Groups Projects
Commit ef759849 authored by Kai Chen's avatar Kai Chen
Browse files

update more info and download links

parent dea733ea
No related branches found
No related tags found
No related merge requests found
......@@ -9,7 +9,7 @@
### Software environment
- Python 3.6
- Python 3.6 / 3.7
- PyTorch 0.4.1
- CUDA 9.0.176
- CUDNN 7.0.4
......@@ -26,10 +26,10 @@
- We report the training GPU memory as the maximum value of `torch.cuda.max_memory_cached()`
for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows, but
closer to the actual requirements.
- We report the inference time with a single GPU. This is the overall time including
data loading, network forwarding and post processing.
- The training memory and time of 2x schedule is simply copied from 1x. It should be very close than
the actual memory and time.
- We report the inference time as the overall time including data loading,
network forwarding and post processing.
- The training memory and time of 2x schedule is simply copied from 1x.
It should be very close to the actual memory and time.
## Baselines
......@@ -38,39 +38,42 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m
### RPN
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (s/im) | AR1000 | Download |
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 | Download |
| ------------------ | ---- | ------- | -------- | ---------- | -------- | ------ | -------- |
| R-50-FPN (caffe) | RPN | 1x | 4.5 | 0.379 | | 58.2 | |
| R-50-FPN (pytorch) | RPN | 1x | 4.8 | 0.407 | | 57.1 | |
| R-50-FPN (pytorch) | RPN | 2x | 4.8 | 0.407 | | 57.6 | |
### Fast R-CNN (coming soon)
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (s/im) | box AP | Download |
| ------------------ | ---- | ------- | -------- | ---------- | -------- | ------ | -------- |
| R-50-FPN (caffe) | Fast | 1x | | | | | |
| R-50-FPN (pytorch) | Fast | 1x | | | | | |
| R-50-FPN (pytorch) | Fast | 2x | | | | | |
| R-50-FPN (caffe) | RPN | 1x | 4.5 | 0.379 | 14.4 | 58.2 | - |
| R-50-FPN (pytorch) | RPN | 1x | 4.8 | 0.407 | 14.5 | 57.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/rpn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN (pytorch) | RPN | 2x | 4.8 | 0.407 | 14.5 | 57.6 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/rpn_r50_fpn_2x_20181010_results.pkl.json) |
### Faster R-CNN
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (s/im) | box AP | Download |
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
| ------------------ | ------ | ------- | -------- | ---------- | -------- | ------ | -------- |
| R-50-FPN (caffe) | Faster | 1x | 4.9 | 0.525 | | 36.7 | |
| R-50-FPN (pytorch) | Faster | 1x | 5.1 | 0.554 | | 36.4 | |
| R-50-FPN (pytorch) | Faster | 2x | 5.1 | 0.554 | | 37.7 | |
| R-50-FPN (caffe) | Faster | 1x | 4.9 | 0.525 | 10.0 | 36.7 | - |
| R-50-FPN (pytorch) | Faster | 1x | 5.1 | 0.554 | 9.9 | 36.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/faster_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN (pytorch) | Faster | 2x | 5.1 | 0.554 | 9.9 | 37.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/faster_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
### Mask R-CNN
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (s/im) | box AP | mask AP | Download |
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
| ------------------ | ---- | ------- | -------- | ---------- | -------- | ------ | ------- | -------- |
| R-50-FPN (caffe) | Mask | 1x | 5.9 | 0.658 | | 37.5 | 34.4 | |
| R-50-FPN (pytorch) | Mask | 1x | 5.8 | 0.690 | | 37.3 | 34.2 | |
| R-50-FPN (pytorch) | Mask | 2x | 5.8 | 0.690 | | 38.6 | 35.1 | |
| R-50-FPN (caffe) | Mask | 1x | 5.9 | 0.658 | 7.7 | 37.5 | 34.4 | - |
| R-50-FPN (pytorch) | Mask | 1x | 5.8 | 0.690 | 7.7 | 37.3 | 34.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN (pytorch) | Mask | 2x | 5.8 | 0.690 | 7.7 | 38.6 | 35.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
### Fast R-CNN (with pre-computed proposals) (coming soon)
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
| ------------------ | ------ | ------- | -------- | ---------- | -------- | ------ | ------ | -------- |
| R-50-FPN (caffe) | Faster | 1x | | | | | | |
| R-50-FPN (pytorch) | Faster | 1x | | | | | | |
| R-50-FPN (pytorch) | Faster | 2x | | | | | | |
| R-50-FPN (caffe) | Mask | 1x | | | | | | |
| R-50-FPN (pytorch) | Mask | 1x | | | | | | |
| R-50-FPN (pytorch) | Mask | 2x | | | | | | |
### RetinaNet (coming soon)
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (s/im) | box AP | mask AP | Download |
| Backbone | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
| ------------------ | --------- | ------- | --------- | ---------- | -------- | ------ | ------- | -------- |
| R-50-FPN (caffe) | RetinaNet | 1x | | | | | | |
| R-50-FPN (pytorch) | RetinaNet | 1x | | | | | | |
......@@ -146,33 +149,34 @@ indicated as *pytorch-style results* / *caffe-style results*.
</tr>
</table>
### Speed
### Training Speed
The training speed is measure with s/iter. The lower, the better.
<table>
<tr>
<th>Type</th>
<th>Detectron (P100<sup>1</sup>)</th>
<th>Detectron.pytorch (XP<sup>2</sup>)</th>
<th>mmdetection<sup>3</sup> (V100 / XP / 1080Ti)</th>
<th>mmdetection<sup>3</sup> (V100<sup>4</sup> / XP)</th>
</tr>
<tr>
<td>RPN</td>
<td>0.416</td>
<td>-</td>
<td>0.407 / 0.413 / - </td>
<td>0.407 / 0.413</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>0.544</td>
<td>1.015</td>
<td>0.554 / 0.579 / - </td>
<td>0.554 / 0.579</td>
</tr>
<tr>
<td>Mask R-CNN</td>
<td>0.889</td>
<td>1.435</td>
<td>0.690 / 0.732 / 0.794</td>
<td>0.690 / 0.732</td>
</tr>
</table>
......@@ -185,6 +189,39 @@ run it on V100, so we report the speed on TITAN XP.
\*3. The speed of pytorch-style ResNet is approximately 5% slower than caffe-style,
and we report the pytorch-style results here.
\*4. We also run the models on a DGX-1 server (P100) and the speed is almost the same as our V100 servers.
### Inference Speed
The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.
<table>
<tr>
<th>Type</th>
<th>Detectron (P100)</th>
<th>Detectron.pytorch (XP)</th>
<th>mmdetection (V100 / XP)</th>
</tr>
<tr>
<td>RPN</td>
<td>12.5</td>
<td>-</td>
<td>14.5 / 15.4</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>10.3</td>
<td></td>
<td>9.9 / 9.8</td>
</tr>
<tr>
<td>Mask R-CNN</td>
<td>8.5</td>
<td></td>
<td>7.7 / 7.4</td>
</tr>
</table>
### Training memory
We perform various tests and there is no doubt that mmdetection is more memory
......@@ -195,5 +232,5 @@ whose implementation is not exactly the same.
`nvidia-smi` shows a larger memory usage for both detectron and mmdetection, e.g.,
we observe a much higher memory usage when we train Mask R-CNN with 2 images per GPU using detectron (10.6G) and mmdetection (9.3G), which is obviously more than actually required.
**Note**: With mmdetection, we can train R-50 FPN Mask R-CNN with **4** images per GPU (TITAN XP, 12G),
> With mmdetection, we can train R-50 FPN Mask R-CNN with **4** images per GPU (TITAN XP, 12G),
which is a promising result.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment