Skip to content
Snippets Groups Projects
Unverified Commit d2483e15 authored by Kai Chen's avatar Kai Chen Committed by GitHub
Browse files

Use isort to sort imports and setup travis (#1085)

* add isort config

* use isort to sort imports

* add isort to travis
parent 864880de
No related branches found
No related tags found
No related merge requests found
Showing
with 45 additions and 40 deletions
[isort]
line_length = 79
multi_line_output = 0
known_first_party = mmdet
known_third_party = mmcv,numpy,matplotlib,pycocotools,six,seaborn,terminaltables,torch,torchvision
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY
\ No newline at end of file
......@@ -2,7 +2,7 @@ dist: xenial
language: python
install:
- pip install flake8 yapf
- pip install isort flake8 yapf
python:
- "3.5"
......@@ -11,4 +11,5 @@ python:
script:
- flake8
- isort -rc --diff mmdet/ tools/
- yapf -r -d --style .style.yapf mmdet/ tools/
\ No newline at end of file
from __future__ import division
import re
from collections import OrderedDict
import torch
from mmcv.runner import Runner, DistSamplerSeedHook, obj_from_dict
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import DistSamplerSeedHook, Runner, obj_from_dict
from mmdet import datasets
from mmdet.core import (DistOptimizerHook, DistEvalmAPHook,
CocoDistEvalRecallHook, CocoDistEvalmAPHook,
Fp16OptimizerHook)
from mmdet.datasets import build_dataloader, DATASETS
from mmdet.core import (CocoDistEvalmAPHook, CocoDistEvalRecallHook,
DistEvalmAPHook, DistOptimizerHook, Fp16OptimizerHook)
from mmdet.datasets import DATASETS, build_dataloader
from mmdet.models import RPN
from .env import get_root_logger
......
import torch
from ..bbox import assign_and_sample, build_assigner, PseudoSampler, bbox2delta
from ..bbox import PseudoSampler, assign_and_sample, bbox2delta, build_assigner
from ..utils import multi_apply
......
import torch
from ..bbox import build_assigner, build_sampler, PseudoSampler
from ..utils import unmap, multi_apply
from ..bbox import PseudoSampler, build_assigner, build_sampler
from ..utils import multi_apply, unmap
def calc_region(bbox, ratio, featmap_size=None):
......
import torch
from .max_iou_assigner import MaxIoUAssigner
from ..geometry import bbox_overlaps
from .max_iou_assigner import MaxIoUAssigner
class ApproxMaxIoUAssigner(MaxIoUAssigner):
......
import torch
from .base_assigner import BaseAssigner
from .assign_result import AssignResult
from ..geometry import bbox_overlaps
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
class MaxIoUAssigner(BaseAssigner):
......
import torch
from .transforms import bbox2delta
from ..utils import multi_apply
from .transforms import bbox2delta
def bbox_target(pos_bboxes_list,
......
from .base_sampler import BaseSampler
from ..assign_sampling import build_sampler
from .base_sampler import BaseSampler
class CombinedSampler(BaseSampler):
......
import torch
from .base_sampler import BaseSampler
from ..transforms import bbox2roi
from .base_sampler import BaseSampler
class OHEMSampler(BaseSampler):
......
......@@ -5,14 +5,14 @@ import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv.parallel import collate, scatter
from mmcv.runner import Hook
from mmcv.parallel import scatter, collate
from pycocotools.cocoeval import COCOeval
from torch.utils.data import Dataset
from .coco_utils import results2json, fast_eval_recall
from .mean_ap import eval_map
from mmdet import datasets
from .coco_utils import fast_eval_recall, results2json
from .mean_ap import eval_map
class DistEvalHook(Hook):
......
import copy
import torch
import torch.nn as nn
from mmcv.runner import OptimizerHook
from .utils import cast_tensor_type
from ..utils.dist_utils import allreduce_grads
from .utils import cast_tensor_type
class Fp16OptimizerHook(OptimizerHook):
......
import torch
import numpy as np
import mmcv
import numpy as np
import torch
def mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list,
......
import torch
import numpy as np
import torch
from mmdet.ops import nms
from ..bbox import bbox_mapping_back
......
from collections import OrderedDict
import torch.distributed as dist
from torch._utils import (_flatten_dense_tensors, _unflatten_dense_tensors,
_take_tensors)
from mmcv.runner import OptimizerHook
from torch._utils import (_flatten_dense_tensors, _take_tensors,
_unflatten_dense_tensors)
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
......
......@@ -6,11 +6,11 @@ import numpy as np
from mmcv.parallel import DataContainer as DC
from torch.utils.data import Dataset
from .registry import DATASETS
from .transforms import (ImageTransform, BboxTransform, MaskTransform,
SegMapTransform, Numpy2Tensor)
from .utils import to_tensor, random_scale
from .extra_aug import ExtraAugmentation
from .registry import DATASETS
from .transforms import (BboxTransform, ImageTransform, MaskTransform,
Numpy2Tensor, SegMapTransform)
from .utils import random_scale, to_tensor
@DATASETS.register_module
......
import platform
from functools import partial
from mmcv.runner import get_dist_info
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from torch.utils.data import DataLoader
from .sampler import GroupSampler, DistributedGroupSampler, DistributedSampler
from .sampler import DistributedGroupSampler, DistributedSampler, GroupSampler
if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973
......
from __future__ import division
import math
import torch
import numpy as np
import numpy as np
import torch
from mmcv.runner.utils import get_dist_info
from torch.utils.data import Sampler
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import Sampler
class DistributedSampler(_DistributedSampler):
......
......@@ -5,8 +5,8 @@ import torch
import torch.nn as nn
from mmcv.cnn import normal_init
from mmdet.core import (AnchorGenerator, anchor_target, delta2bbox,
multi_apply, multiclass_nms, force_fp32)
from mmdet.core import (AnchorGenerator, anchor_target, delta2bbox, force_fp32,
multi_apply, multiclass_nms)
from ..builder import build_loss
from ..registry import HEADS
......
......@@ -2,10 +2,10 @@ import torch
import torch.nn as nn
from mmcv.cnn import normal_init
from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32
from mmdet.core import distance2bbox, force_fp32, multi_apply, multiclass_nms
from ..builder import build_loss
from ..registry import HEADS
from ..utils import bias_init_with_prob, Scale, ConvModule
from ..utils import ConvModule, Scale, bias_init_with_prob
INF = 1e8
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment