Skip to content
Snippets Groups Projects
Unverified Commit c1ef12df authored by Kai Chen's avatar Kai Chen Committed by GitHub
Browse files

Remove datasets.loader and add datasets.samplers (#2482)

* remove datasets.loader and add datasets.samplers

* fix typo in the filename
parent a1c3aa49
No related branches found
No related tags found
No related merge requests found
......@@ -107,6 +107,7 @@ mmdet/version.py
data
.vscode
.idea
.DS_Store
# custom
*.pkl
......
from .builder import build_dataset
from .builder import build_dataloader, build_dataset
from .cityscapes import CityscapesDataset
from .coco import CocoDataset
from .custom import CustomDataset
from .dataset_wrappers import ConcatDataset, RepeatDataset
from .loader import DistributedGroupSampler, GroupSampler, build_dataloader
from .registry import DATASETS
from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler
from .voc import VOCDataset
from .wider_face import WIDERFaceDataset
from .xml_style import XMLDataset
......@@ -12,6 +12,6 @@ from .xml_style import XMLDataset
__all__ = [
'CustomDataset', 'XMLDataset', 'CocoDataset', 'VOCDataset',
'CityscapesDataset', 'GroupSampler', 'DistributedGroupSampler',
'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'WIDERFaceDataset',
'DATASETS', 'build_dataset'
'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset',
'WIDERFaceDataset', 'DATASETS', 'build_dataset'
]
import copy
import platform
import random
from functools import partial
import numpy as np
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from torch.utils.data import DataLoader
from mmdet.utils import build_from_cfg
from .dataset_wrappers import ConcatDataset, RepeatDataset
from .registry import DATASETS
from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler
if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
hard_limit = rlimit[1]
soft_limit = min(4096, hard_limit)
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
def _concat_dataset(cfg, default_args=None):
......@@ -39,3 +56,73 @@ def build_dataset(cfg, default_args=None):
dataset = build_from_cfg(cfg, DATASETS, default_args)
return dataset
def build_dataloader(dataset,
imgs_per_gpu,
workers_per_gpu,
num_gpus=1,
dist=True,
shuffle=True,
seed=None,
**kwargs):
"""Build PyTorch DataLoader.
In distributed training, each GPU/process has a dataloader.
In non-distributed training, there is only one dataloader for all GPUs.
Args:
dataset (Dataset): A PyTorch dataset.
imgs_per_gpu (int): Number of images on each GPU, i.e., batch size of
each GPU.
workers_per_gpu (int): How many subprocesses to use for data loading
for each GPU.
num_gpus (int): Number of GPUs. Only used in non-distributed training.
dist (bool): Distributed training/test or not. Default: True.
shuffle (bool): Whether to shuffle the data at every epoch.
Default: True.
kwargs: any keyword argument to be used to initialize DataLoader
Returns:
DataLoader: A PyTorch dataloader.
"""
rank, world_size = get_dist_info()
if dist:
# DistributedGroupSampler will definitely shuffle the data to satisfy
# that images on each GPU are in the same group
if shuffle:
sampler = DistributedGroupSampler(dataset, imgs_per_gpu,
world_size, rank)
else:
sampler = DistributedSampler(
dataset, world_size, rank, shuffle=False)
batch_size = imgs_per_gpu
num_workers = workers_per_gpu
else:
sampler = GroupSampler(dataset, imgs_per_gpu) if shuffle else None
batch_size = num_gpus * imgs_per_gpu
num_workers = num_gpus * workers_per_gpu
init_fn = partial(
worker_init_fn, num_workers=num_workers, rank=rank,
seed=seed) if seed is not None else None
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu),
pin_memory=False,
worker_init_fn=init_fn,
**kwargs)
return data_loader
def worker_init_fn(worker_id, num_workers, rank, seed):
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
from .build_loader import build_dataloader
from .sampler import DistributedGroupSampler, GroupSampler
__all__ = ['GroupSampler', 'DistributedGroupSampler', 'build_dataloader']
import platform
import random
from functools import partial
import numpy as np
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from torch.utils.data import DataLoader
from .sampler import DistributedGroupSampler, DistributedSampler, GroupSampler
if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
hard_limit = rlimit[1]
soft_limit = min(4096, hard_limit)
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
def build_dataloader(dataset,
imgs_per_gpu,
workers_per_gpu,
num_gpus=1,
dist=True,
shuffle=True,
seed=None,
**kwargs):
"""Build PyTorch DataLoader.
In distributed training, each GPU/process has a dataloader.
In non-distributed training, there is only one dataloader for all GPUs.
Args:
dataset (Dataset): A PyTorch dataset.
imgs_per_gpu (int): Number of images on each GPU, i.e., batch size of
each GPU.
workers_per_gpu (int): How many subprocesses to use for data loading
for each GPU.
num_gpus (int): Number of GPUs. Only used in non-distributed training.
dist (bool): Distributed training/test or not. Default: True.
shuffle (bool): Whether to shuffle the data at every epoch.
Default: True.
kwargs: any keyword argument to be used to initialize DataLoader
Returns:
DataLoader: A PyTorch dataloader.
"""
rank, world_size = get_dist_info()
if dist:
# DistributedGroupSampler will definitely shuffle the data to satisfy
# that images on each GPU are in the same group
if shuffle:
sampler = DistributedGroupSampler(dataset, imgs_per_gpu,
world_size, rank)
else:
sampler = DistributedSampler(
dataset, world_size, rank, shuffle=False)
batch_size = imgs_per_gpu
num_workers = workers_per_gpu
else:
sampler = GroupSampler(dataset, imgs_per_gpu) if shuffle else None
batch_size = num_gpus * imgs_per_gpu
num_workers = num_gpus * workers_per_gpu
init_fn = partial(
worker_init_fn, num_workers=num_workers, rank=rank,
seed=seed) if seed is not None else None
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu),
pin_memory=False,
worker_init_fn=init_fn,
**kwargs)
return data_loader
def worker_init_fn(worker_id, num_workers, rank, seed):
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
from .distributed_sampler import DistributedSampler
from .group_sampler import DistributedGroupSampler, GroupSampler
__all__ = ['DistributedSampler', 'DistributedGroupSampler', 'GroupSampler']
import torch
from torch.utils.data import DistributedSampler as _DistributedSampler
class DistributedSampler(_DistributedSampler):
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
self.shuffle = shuffle
def __iter__(self):
# deterministically shuffle based on epoch
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
......@@ -4,36 +4,9 @@ import math
import numpy as np
import torch
from mmcv.runner import get_dist_info
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import Sampler
class DistributedSampler(_DistributedSampler):
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
self.shuffle = shuffle
def __iter__(self):
# deterministically shuffle based on epoch
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
class GroupSampler(Sampler):
def __init__(self, dataset, samples_per_gpu=1):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment