Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
S
Swin-Transformer-Object-Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to JiHu GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
wanggh
Swin-Transformer-Object-Detection
Commits
9e15a014
Unverified
Commit
9e15a014
authored
5 years ago
by
Jiaqi Wang
Committed by
GitHub
5 years ago
Browse files
Options
Downloads
Patches
Plain Diff
add reppoints config and model without gn (#2058)
* add reppoints without gn * fix
parent
93bed07b
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
configs/reppoints/README.md
+20
-19
20 additions, 19 deletions
configs/reppoints/README.md
configs/reppoints/reppoints_moment_r50_no_gn_fpn_1x.py
+137
-0
137 additions, 0 deletions
configs/reppoints/reppoints_moment_r50_no_gn_fpn_1x.py
with
157 additions
and
19 deletions
configs/reppoints/README.md
+
20
−
19
View file @
9e15a014
...
@@ -32,25 +32,26 @@ Another feature of this repo is the demonstration of an `anchor-free detector`,
...
@@ -32,25 +32,26 @@ Another feature of this repo is the demonstration of an `anchor-free detector`,
The results on COCO 2017val are shown in the table below.
The results on COCO 2017val are shown in the table below.
| Method | Backbone | Anchor | convert func | Lr schd | box AP | Download |
| Method | Backbone | GN | Anchor | convert func | Lr schd | box AP | Download |
| :----: | :------: | :-------: | :------: | :-----: | :----: | :------: |
| :----: | :------: | :-------: | :-------: | :------: | :-----: | :----: | :------: |
| BBox | R-50-FPN | single | - | 1x | 36.3|
[
model
](
https://drive.google.com/open?id=1TaVAFGZP2i7RwtlQjy3LBH1WI-YRH774
)
|
| BBox | R-50-FPN | Y | single | - | 1x | 36.3|
[
model
](
https://drive.google.com/open?id=1TaVAFGZP2i7RwtlQjy3LBH1WI-YRH774
)
|
| BBox | R-50-FPN | none | - | 1x | 37.3|
[
model
](
https://drive.google.com/open?id=1hpfu-I7gtZnIb0NU2WvUvaZz_dm-THuZ
)
|
| BBox | R-50-FPN | Y | none | - | 1x | 37.3|
[
model
](
https://drive.google.com/open?id=1hpfu-I7gtZnIb0NU2WvUvaZz_dm-THuZ
)
|
| RepPoints | R-50-FPN | none | partial MinMax | 1x | 38.1|
[
model
](
https://drive.google.com/open?id=11zFtdKH-QGz_zH7vlcIih6FQAjV84CWc
)
|
| RepPoints | R-50-FPN | Y | none | partial MinMax | 1x | 38.1|
[
model
](
https://drive.google.com/open?id=11zFtdKH-QGz_zH7vlcIih6FQAjV84CWc
)
|
| RepPoints | R-50-FPN | none | MinMax | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1Cg9818dpkL-9qjmYdkhrY_BRiQFjV4xu
)
|
| RepPoints | R-50-FPN | Y | none | MinMax | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1Cg9818dpkL-9qjmYdkhrY_BRiQFjV4xu
)
|
| RepPoints | R-50-FPN | none | moment | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1rQg-lE-5nuqO1bt6okeYkti4Q-EaBsu_
)
|
| RepPoints | R-50-FPN | Y | none | moment | 1x | 38.2|
[
model
](
https://drive.google.com/open?id=1rQg-lE-5nuqO1bt6okeYkti4Q-EaBsu_
)
|
| RepPoints | R-50-FPN | none | moment | 2x | 38.6|
[
model
](
https://drive.google.com/open?id=1TfR-5geVviKhRoXL9JP6cG3fkN2itbBU
)
|
| RepPoints | R-50-FPN | N | none | moment | 1x | 36.8|
[
model
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/reppoints/reppoints_moment_r50_no_gn_fpn_1x-66db098e.pth
)
|
| RepPoints | R-50-FPN | none | moment | 2x (ms train) | 40.8|
[
model
](
https://drive.google.com/open?id=1oaHTIaP51oB5HJ6GWV3WYK19lMm9iJO6
)
|
| RepPoints | R-50-FPN | Y | none | moment | 2x | 38.6|
[
model
](
https://drive.google.com/open?id=1TfR-5geVviKhRoXL9JP6cG3fkN2itbBU
)
|
| RepPoints | R-50-FPN | none | moment | 2x (ms train&ms test) | 42.2| |
| RepPoints | R-50-FPN | Y | none | moment | 2x (ms train) | 40.8|
[
model
](
https://drive.google.com/open?id=1oaHTIaP51oB5HJ6GWV3WYK19lMm9iJO6
)
|
| RepPoints | R-101-FPN | none | moment | 2x | 40.3|
[
model
](
https://drive.google.com/open?id=1BAmGeUQ_zVQi2u7rgOuPQem2EjXDLgWm
)
|
| RepPoints | R-50-FPN | Y | none | moment | 2x (ms train&ms test) | 42.2| |
| RepPoints | R-101-FPN | none | moment | 2x (ms train) | 42.3|
[
model
](
https://drive.google.com/open?id=14Lf0p4fXElXaxFu8stk3hek3bY8tNENX
)
|
| RepPoints | R-101-FPN | Y | none | moment | 2x | 40.3|
[
model
](
https://drive.google.com/open?id=1BAmGeUQ_zVQi2u7rgOuPQem2EjXDLgWm
)
|
| RepPoints | R-101-FPN | none | moment | 2x (ms train&ms test) | 44.1| |
| RepPoints | R-101-FPN | Y | none | moment | 2x (ms train) | 42.3|
[
model
](
https://drive.google.com/open?id=14Lf0p4fXElXaxFu8stk3hek3bY8tNENX
)
|
| RepPoints | R-101-FPN-DCN | none | moment | 2x | 43.0|
[
model
](
https://drive.google.com/open?id=1hpptxpb4QtNuB-HnV5wHbDltPHhlYq4z
)
|
| RepPoints | R-101-FPN | Y | none | moment | 2x (ms train&ms test) | 44.1| |
| RepPoints | R-101-FPN-DCN | none | moment | 2x (ms train) | 44.8|
[
model
](
https://drive.google.com/open?id=1fsTckK99HYjOURwcFeHfy5JRRtsCajfX
)
|
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x | 43.0|
[
model
](
https://drive.google.com/open?id=1hpptxpb4QtNuB-HnV5wHbDltPHhlYq4z
)
|
| RepPoints | R-101-FPN-DCN | none | moment | 2x (ms train&ms test) | 46.4| |
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x (ms train) | 44.8|
[
model
](
https://drive.google.com/open?id=1fsTckK99HYjOURwcFeHfy5JRRtsCajfX
)
|
| RepPoints | X-101-FPN-DCN | none | moment | 2x | 44.5|
[
model
](
https://drive.google.com/open?id=1Y8vqaqU88-FEqqwl6Zb9exD5O246yrMR
)
|
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x (ms train&ms test) | 46.4| |
| RepPoints | X-101-FPN-DCN | none | moment | 2x (ms train) | 45.6|
[
model
](
https://drive.google.com/open?id=1nr9gcVWxzeakbfPC6ON9yvKOuLzj_RrJ
)
|
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x | 44.5|
[
model
](
https://drive.google.com/open?id=1Y8vqaqU88-FEqqwl6Zb9exD5O246yrMR
)
|
| RepPoints | X-101-FPN-DCN | none | moment | 2x (ms train&ms test) | 46.8| |
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x (ms train) | 45.6|
[
model
](
https://drive.google.com/open?id=1nr9gcVWxzeakbfPC6ON9yvKOuLzj_RrJ
)
|
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x (ms train&ms test) | 46.8| |
**Notes:**
**Notes:**
...
...
This diff is collapsed.
Click to expand it.
configs/reppoints/reppoints_moment_r50_no_gn_fpn_1x.py
0 → 100644
+
137
−
0
View file @
9e15a014
# model settings
model
=
dict
(
type
=
'
RepPointsDetector
'
,
pretrained
=
'
torchvision://resnet50
'
,
backbone
=
dict
(
type
=
'
ResNet
'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'
pytorch
'
),
neck
=
dict
(
type
=
'
FPN
'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
True
,
num_outs
=
5
),
bbox_head
=
dict
(
type
=
'
RepPointsHead
'
,
num_classes
=
81
,
in_channels
=
256
,
feat_channels
=
256
,
point_feat_channels
=
256
,
stacked_convs
=
3
,
num_points
=
9
,
gradient_mul
=
0.1
,
point_strides
=
[
8
,
16
,
32
,
64
,
128
],
point_base_scale
=
4
,
loss_cls
=
dict
(
type
=
'
FocalLoss
'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox_init
=
dict
(
type
=
'
SmoothL1Loss
'
,
beta
=
0.11
,
loss_weight
=
0.5
),
loss_bbox_refine
=
dict
(
type
=
'
SmoothL1Loss
'
,
beta
=
0.11
,
loss_weight
=
1.0
),
transform_method
=
'
moment
'
))
# training and testing settings
train_cfg
=
dict
(
init
=
dict
(
assigner
=
dict
(
type
=
'
PointAssigner
'
,
scale
=
4
,
pos_num
=
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
refine
=
dict
(
assigner
=
dict
(
type
=
'
MaxIoUAssigner
'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'
nms
'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# dataset settings
dataset_type
=
'
CocoDataset
'
data_root
=
'
data/coco/
'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'
LoadImageFromFile
'
),
dict
(
type
=
'
LoadAnnotations
'
,
with_bbox
=
True
),
dict
(
type
=
'
Resize
'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'
RandomFlip
'
,
flip_ratio
=
0.5
),
dict
(
type
=
'
Normalize
'
,
**
img_norm_cfg
),
dict
(
type
=
'
Pad
'
,
size_divisor
=
32
),
dict
(
type
=
'
DefaultFormatBundle
'
),
dict
(
type
=
'
Collect
'
,
keys
=
[
'
img
'
,
'
gt_bboxes
'
,
'
gt_labels
'
]),
]
test_pipeline
=
[
dict
(
type
=
'
LoadImageFromFile
'
),
dict
(
type
=
'
MultiScaleFlipAug
'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'
Resize
'
,
keep_ratio
=
True
),
dict
(
type
=
'
RandomFlip
'
),
dict
(
type
=
'
Normalize
'
,
**
img_norm_cfg
),
dict
(
type
=
'
Pad
'
,
size_divisor
=
32
),
dict
(
type
=
'
ImageToTensor
'
,
keys
=
[
'
img
'
]),
dict
(
type
=
'
Collect
'
,
keys
=
[
'
img
'
]),
])
]
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'
annotations/instances_train2017.json
'
,
img_prefix
=
data_root
+
'
train2017/
'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'
annotations/instances_val2017.json
'
,
img_prefix
=
data_root
+
'
val2017/
'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'
annotations/instances_val2017.json
'
,
img_prefix
=
data_root
+
'
val2017/
'
,
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'
SGD
'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'
step
'
,
warmup
=
'
linear
'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'
TextLoggerHook
'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'
nccl
'
)
log_level
=
'
INFO
'
work_dir
=
'
./work_dirs/reppoints_moment_r50_no_gn_fpn_1x
'
load_from
=
None
resume_from
=
None
auto_resume
=
True
workflow
=
[(
'
train
'
,
1
)]
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment