Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
S
Swin-Transformer-Object-Detection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to JiHu GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
wanggh
Swin-Transformer-Object-Detection
Commits
600b1b2c
Commit
600b1b2c
authored
6 years ago
by
Kai Chen
Browse files
Options
Downloads
Patches
Plain Diff
update model zoo
parent
490b6ca5
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
MODEL_ZOO.md
+22
-0
22 additions, 0 deletions
MODEL_ZOO.md
with
22 additions
and
0 deletions
MODEL_ZOO.md
+
22
−
0
View file @
600b1b2c
...
...
@@ -145,8 +145,30 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m
**Notes:**
-
The
`20e`
schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.
-
Cascade Mask R-CNN with X-101-64x4d-FPN was trained using 16 GPU with a batch size of 16 (1 images per GPU).
### SSD
| Backbone | Size | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:----:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| VGG16 | 300 | caffe | 120e | 3.5 | 0.286 | 22.9 / 29.2 | 25.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth
)
|
| VGG16 | 512 | caffe | 120e | 6.3 | 0.458 | 17.3 / 21.2 | 29.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth
)
|
### SSD (PASCAL VOC)
| Backbone | Size | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:----:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| VGG16 | 300 | caffe | 240e | 1.2 | 0.189 | 40.1 / 58.0 | 77.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_voc_vgg16_caffe_240e_20181221-2f05dd40.pth
)
|
| VGG16 | 512 | caffe | 240e | 2.9 | 0.261 | 28.1 / 36.2 | 80.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_voc_vgg16_caffe_240e_20181221-7652ee18.pth
)
|
**Notes:**
-
`cudnn.benchmark`
is set as
`True`
for SSD training and testing.
-
Inference time is reported for batch size = 1 and batch size = 8.
-
The speed difference between VOC and COCO is caused by model parameters and nms.
## Comparison with Detectron
We compare mmdetection with
[
Detectron
](
https://github.com/facebookresearch/Detectron
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment