Skip to content
Snippets Groups Projects
Unverified Commit 42f5b6c6 authored by Haian Huang(深度眸)'s avatar Haian Huang(深度眸) Committed by GitHub
Browse files

Add Tag to config (#4426)

parent 6cdb0a37
No related branches found
No related tags found
No related merge requests found
Showing
with 40 additions and 0 deletions
# Albu Example
[OTHERS]
## Results and Models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{zhang2019bridging,
title = {Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
We provide config files to reproduce the object detection & instance segmentation results in the ICCV 2019 Oral paper for [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188).
```
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{Cai_2019,
title={Cascade R-CNN: High Quality Object Detection and Instance Segmentation},
......
# Cascade RPN
[ALGORITHM]
We provide the code for reproducing experiment results of [Cascade RPN](https://arxiv.org/abs/1909.06720).
```
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@InProceedings{Dong_2020_CVPR,
author = {Dong, Zhiwei and Li, Guoxuan and Liao, Yue and Wang, Fei and Ren, Pengju and Qian, Chen},
......
# Cityscapes Dataset
[DATASET]
## Common settings
- All baselines were trained using 8 GPU with a batch size of 8 (1 images per GPU) using the [linear scaling rule](https://arxiv.org/abs/1706.02677) to scale the learning rate.
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@inproceedings{law2018cornernet,
title={Cornernet: Detecting objects as paired keypoints},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```none
@inproceedings{dai2017deformable,
title={Deformable Convolutional Networks},
......
# DeepFashion
[DATASET]
[MMFashion](https://github.com/open-mmlab/mmfashion) develops "fashion parsing and segmentation" module
based on the dataset
[DeepFashion-Inshop](https://drive.google.com/drive/folders/0B7EVK8r0v71pVDZFQXRsMDZCX1E?usp=sharing).
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
We provide the config files for [DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution](https://arxiv.org/pdf/2006.02334.pdf).
```BibTeX
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
We provide the config files for DETR: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872).
```BibTeX
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{wu2019rethinking,
title={Rethinking Classification and Localization for Object Detection},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```
@article{DynamicRCNN,
author = {Hongkai Zhang and Hong Chang and Bingpeng Ma and Naiyan Wang and Xilin Chen},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{zhu2019empirical,
title={An Empirical Study of Spatial Attention Mechanisms in Deep Networks},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@inproceedings{girshick2015fast,
title={Fast r-cnn},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{Ren_2017,
title={Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks},
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{tian2019fcos,
title={FCOS: Fully Convolutional One-Stage Object Detection},
......
# FoveaBox: Beyond Anchor-based Object Detector
[ALGORITHM]
FoveaBox is an accurate, flexible and completely anchor-free object detection system for object detection framework, as presented in our paper [https://arxiv.org/abs/1904.03797](https://arxiv.org/abs/1904.03797):
Different from previous anchor-based methods, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object.
......
......@@ -2,6 +2,8 @@
## Introduction
[ALGORITHM]
```latex
@article{micikevicius2017mixed,
title={Mixed precision training},
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment