Skip to content
Snippets Groups Projects
Unverified Commit 18daa4a9 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Reformat project links (#2767)

parent ea4ffff8
No related branches found
No related tags found
No related merge requests found
......@@ -8,22 +8,21 @@ Pull requests are also welcomed.
To make this list also a reference for the community to develop and compare new object detection algorithms, we list them following the time order of top-tier conferences.
Methods already supported and maintained by MMDetection are not listed.
- [SEPC](https://github.com/jshilong/SEPC): [Scale-equalizing Pyramid Convolution for Object Detection](https://arxiv.org/abs/2005.03101), CVPR2020.
- [TSD](https://github.com/Sense-X/TSD): [Revisiting the Sibling Head in Object Detector](https://arxiv.org/abs/2003.07540), CVPR2020.
- [PolarMask](https://github.com/xieenze/PolarMask): [Single Shot Instance Segmentation with Polar Representation](https://arxiv.org/abs/1909.13226), CVPR2020.
- [Hit-Detector](https://github.com/ggjy/HitDet.pytorch): [Hierarchical Trinity Architecture Search for Object Detection](https://arxiv.org/abs/2003.11818), CVPR2020.
- [ZeroQ](https://github.com/amirgholami/ZeroQ): [A Novel Zero Shot Quantization Framework](https://arxiv.org/abs/2001.00281), CVPR2020.
- Scale-equalizing Pyramid Convolution for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2005.03101) [[github]](https://github.com/jshilong/SEPC)
- Revisiting the Sibling Head in Object Detector, CVPR2020. [[paper]](https://arxiv.org/abs/2003.07540)[[github]](https://github.com/Sense-X/TSD)
- PolarMask: Single Shot Instance Segmentation with Polar Representation, CVPR2020. [[paper]](https://arxiv.org/abs/1909.13226)[[github]](https://github.com/xieenze/PolarMask)
- Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2003.11818)[[github]](https://github.com/ggjy/HitDet.pytorch)
- ZeroQ: A Novel Zero Shot Quantization Framework, CVPR2020. [[paper]](https://arxiv.org/abs/2001.00281)[[github]](https://github.com/amirgholami/ZeroQ)
- CBNet: A Novel Composite Backbone Network Architecture for Object Detection, AAAI2020. [[paper]](https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf)[[github]](https://github.com/VDIGPKU/CBNet)
- RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation, AAAI2020. [[paper]](https://arxiv.org/abs/1912.05070)[[github]](https://github.com/wangsr126/RDSNet)
- Training-Time-Friendly Network for Real-Time Object Detection, AAAI2020. [[paper]](https://arxiv.org/abs/1909.00700)[[github]](https://github.com/ZJULearning/ttfnet)
- [CBNet](https://github.com/VDIGPKU/CBNet): [A Novel Composite Backbone Network Architecture for Object Detection](https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf), AAAI2020
- [RDSNet](https://github.com/wangsr126/RDSNet): [A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation](https://arxiv.org/abs/1912.05070), AAAI2020.
- [TTFNet](https://github.com/ZJULearning/ttfnet): [Training-Time-Friendly Network for Real-Time Object Detection](https://arxiv.org/abs/1909.00700), AAAI2020.
- Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution, NeurIPS 2019. [[paper]](https://arxiv.org/abs/1909.06720)[[github]](https://github.com/thangvubk/Cascade-RPN)
- Reasoning R-CNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR2019. [[paper]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf)[[github]](https://github.com/chanyn/Reasoning-RCNN)
- Learning RoI Transformer for Oriented Object Detection in Aerial Images, CVPR2019. [[paper]](https://arxiv.org/abs/1812.00155)[[github]](https://github.com/dingjiansw101/AerialDetection)
- [Cascade RPN](https://github.com/thangvubk/Cascade-RPN): [Delving into High-Quality Region Proposal Network with Adaptive Convolution](https://arxiv.org/abs/1909.06720), NeurIPS 2019.
- [Reasoning R-CNN](https://github.com/chanyn/Reasoning-RCNN): [Unifying Adaptive Global Reasoning into Large-scale Object Detection](http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf), CVPR2019.
- [DOTA](https://github.com/dingjiansw101/AerialDetection): [Learning RoI Transformer for Oriented Object Detection in Aerial Images](https://arxiv.org/abs/1812.00155), CVPR2019.
- [SOLO](https://github.com/WXinlong/SOLO): [Segmenting Objects by Locations](https://arxiv.org/abs/1912.04488)
- [SOLOv2](https://github.com/WXinlong/SOLO): [Dynamic, Faster and Stronger](https://arxiv.org/abs/2003.10152)
- [Dense Peppoints](https://github.com/justimyhxu/Dense-RepPoints): [Representing Visual Objects with Dense Point Sets](https://arxiv.org/abs/1912.11473).
- [IterDet](https://github.com/saic-vul/iterdet): [Iterative Scheme for Object Detection in Crowded Environments](https://arxiv.org/abs/2005.05708)
- [CBN](https://github.com/Howal/Cross-iterationBatchNorm): [Cross-Iteration Batch Normalization](https://arxiv.org/abs/2002.05712)
- SOLO: Segmenting Objects by Locations. [[paper]](https://arxiv.org/abs/1912.04488)[[github]](https://github.com/WXinlong/SOLO)
- SOLOv2: Dynamic, Faster and Stronger. [[paper]](https://arxiv.org/abs/2003.10152)[[github]](https://github.com/WXinlong/SOLO)
- Dense Peppoints: Representing Visual Objects with Dense Point Sets. [[paper]](https://arxiv.org/abs/1912.11473)[[github]](https://github.com/justimyhxu/Dense-RepPoints)
- IterDet: Iterative Scheme for Object Detection in Crowded Environments. [[paper]](https://arxiv.org/abs/2005.05708)[[github]](https://github.com/saic-vul/iterdet)
- Cross-Iteration Batch Normalization [[paper]](https://arxiv.org/abs/2002.05712)[[github]](https://github.com/Howal/Cross-iterationBatchNorm)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment