Skip to content
Snippets Groups Projects
  • Wenwei Zhang's avatar
    dab4ac1b
    Support RegNetX models (#2710) · dab4ac1b
    Wenwei Zhang authored
    * Add RegNet, docs/refactor TBD
    
    * Support RegNet
    
    * Add RegNets
    
    * Modify docs and refactor code
    
    * fix pre-train bug
    
    * Performance ready
    
    * Use public model weights
    
    * Performance & settings done
    
    * Fix unittest bug
    
    * Try another way of test config
    
    * Add unittest and refactor
    
    * Reformat
    
    * Finish refactor regnet
    
    * merge tests
    
    * fix conflicts
    
    * Fix resnext CI bug
    
    * rename parameter
    
    * Add ref link & clean _delete_
    
    * tweaks of doc
    
    * try resnext doctest
    
    * add expansion in block
    
    * remove doctest of resnext
    Support RegNetX models (#2710)
    Wenwei Zhang authored
    * Add RegNet, docs/refactor TBD
    
    * Support RegNet
    
    * Add RegNets
    
    * Modify docs and refactor code
    
    * fix pre-train bug
    
    * Performance ready
    
    * Use public model weights
    
    * Performance & settings done
    
    * Fix unittest bug
    
    * Try another way of test config
    
    * Add unittest and refactor
    
    * Reformat
    
    * Finish refactor regnet
    
    * merge tests
    
    * fix conflicts
    
    * Fix resnext CI bug
    
    * rename parameter
    
    * Add ref link & clean _delete_
    
    * tweaks of doc
    
    * try resnext doctest
    
    * add expansion in block
    
    * remove doctest of resnext
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
retinanet_r50_regnetx-800MF_fpn_1x_coco.py 471 B
_base_ = './retinanet_r50_regnetx-3GF_fpn_1x_coco.py'
model = dict(
    pretrained='open-mmlab://regnetx_800mf',
    backbone=dict(
        type='RegNet',
        arch='regnetx_800mf',
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[64, 128, 288, 672],
        out_channels=256,
        num_outs=5))