-
Yutong Lin authoredYutong Lin authored
Swin Transformer for Object Detection
This repo contains the supported code and configuration files to reproduce object detection results of Swin Transformer. It is based on mmdetection.
Updates
04/12/2021 Initial commits
Results and Models
Mask R-CNN
Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
---|---|---|---|---|---|---|---|---|---|
Swin-T | ImageNet-1K | 3x | 46.0 | 41.6 | 48M | 267G | config | github/baidu | github/baidu |
Swin-S | ImageNet-1K | 3x | 48.5 | 43.3 | 69M | 359G | config | github/baidu | github/baidu |
Cascade Mask R-CNN
Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
---|---|---|---|---|---|---|---|---|---|
Swin-T | ImageNet-1K | 3x | 50.4 | 43.7 | 86M | 745G | config | github/baidu | github/baidu |
Swin-S | ImageNet-1K | 3x | 51.9 | 45.0 | 107M | 838G | config | github/baidu | github/baidu |
Swin-B | ImageNet-1K | 3x | 51.9 | 45.0 | 145M | 982G | config | github/baidu | github/baidu |
RepPoints V2
Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs |
---|---|---|---|---|---|---|
Swin-T | ImageNet-1K | 3x | 50.0 | - | 45M | 283G |
Mask RepPoints V2
Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs |
---|---|---|---|---|---|---|
Swin-T | ImageNet-1K | 3x | 50.3 | 43.6 | 47M | 292G |
Notes:
- Pre-trained models can be downloaded from Swin Transformer for ImageNet Classification.
- Access code for
baidu
isswin
.
Usage
Installation
Please refer to get_started.md for installation and dataset preparation.
Inference
# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm
# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm
Training
To train a detector with pre-trained models, run:
# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
For example, to train a Cascade Mask R-CNN model with a Swin-T
backbone and 8 gpus, run:
tools/dist_train.sh configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py 8 --cfg-options model.pretrained=<PRETRAIN_MODEL>
Note: use_checkpoint
is used to save GPU memory. Please refer to this page for more details.
Apex (optional):
We use apex for mixed precision training by default. To install apex, run:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
If you would like to disable apex, modify the type of runner as EpochBasedRunner
and comment out the following code block in the configuration files:
# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
type="DistOptimizerHook",
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
use_fp16=True,
)
Citing Swin Transformer
@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}
}
Other Links
Image Classification: See Swin Transformer for Image Classification.
Semantic Segmentation: See Swin Transformer for Semantic Segmentation.