Skip to content
Snippets Groups Projects
finetune.md 3.64 KiB
Newer Older
Kai Chen's avatar
Kai Chen committed
# Tutorial 1: Finetuning Models

Detectors pre-trained on the COCO dataset can serve as a good pre-trained model for other datasets, e.g., CityScapes and KITTI Dataset.
This tutorial provides instruction for users to use the models provided in the [Model Zoo](../model_zoo.md) for other datasets to obatin better performance.

There are two steps to finetune a model on a new dataset.
- Add support for the new dataset following [Tutorial 2: Adding New Dataset](new_dataset.md).
- Modify the configs as will be discussed in this tutorial.


Take the finetuning process on Cityscapes Dataset as an example, the users need to modify five parts in the config.

## Inherit base configs
To release the burdun and reduce bugs in writing the whole configs, MMDetection V2.0 support inheriting configs from multiple existing configs. To finetune a Mask RCNN model, the new config needs to inherit
TinUnkai's avatar
TinUnkai committed
`_base_/models/mask_rcnn_r50_fpn.py` to build the basic structure of the model. To use the Cityscapes Dataset, the new config can also simply inherit `_base_/datasets/cityscapes_instance.py`. For runtime settings such as training schedules, the new config needs to inherit `_base_/default_runtime.py`. This configs are in the `configs` directory and the users can also choose to write the whole contents rather than use inheritance.

```python
_base_ = [
    '../_base_/models/mask_rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
]
```

## Modify head
Then the new config needs to modify the head according to the class numbers of the new datasets. By only changing `num_classes` in the roi_head, the weights of the pre-trained models are mostly reused except the final prediction head.

```python
model = dict(
    pretrained=None,
    roi_head=dict(
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=8,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.1, 0.1, 0.2, 0.2],
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
```

## Modify dataset
The users may also need to prepare the dataset and write the configs about dataset. MMDetection V2.0 already support VOC, WIDER FACE, COCO and Cityscapes Dataset.

## Modify training schedule
The finetuning hyperparameters vary from the default schedule. It usually requires smaller learning rate and less training epochs

```python
# optimizer
# lr is set for a batch size of 8
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    # [7] yields higher performance than [6]
    step=[7])
total_epochs = 8  # actual epoch = 8 * 8 = 64
log_config = dict(interval=100)
```

## Use pre-trained model
To use the pre-trained model, the new config add the link of pre-trained models in the `load_from`. The users might need to download the model weights before training to avoid the download time during training.

```python
load_from = 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth'  # noqa

```