Newer
Older
# CARAFE: Content-Aware ReAssembly of FEatures
## Introduction
We provide config files to reproduce the object detection & instance segmentation results in the ICCV 2019 Oral paper for [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188).
```
@inproceedings{Wang_2019_ICCV,
title = {CARAFE: Content-Aware ReAssembly of FEatures},
author = {Wang, Jiaqi and Chen, Kai and Xu, Rui and Liu, Ziwei and Loy, Chen Change and Lin, Dahua},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}
```
## Results and Models
The results on COCO 2017 val is shown in the below table.
| Method | Backbone | Style | Lr schd | Test Proposal Num| Box AP | Mask AP | Download |
| :--------------------: | :------: | :-----: |:-------:| :--------------: | :----: | :--------: |:-------: |
| Faster R-CNN w/ CARAFE | R-50-FPN | pytorch | 1x | 1000 | | | |
| - | - | - | - | 2000 | | | |
| Mask R-CNN w/ CARAFE | R-50-FPN | pytorch | 1x | 1000 | | | |
| - | - | - | - | 2000 | | | |
## Implementation
The CUDA implementation of CARAFE can be find at `mmdet/ops/carafe` under this repository.
## Setup CARAFE
a. Use CARAFE in mmdetection.
Install mmdetection following the official guide.
b. Use CARAFE in your own project.
Git clone mmdetection.
```shell
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
```
Setup CARAFE in your own project.
```shell
cp -r ./mmdet/ops/carafe $Your_Project_Path$
cd $Your_Project_Path$/carafe
python setup.py develop
# or "pip install -v -e ."
cd ..
python ./carafe/grad_check.py
```