Commit 952ed581 authored by Mijian Xu's avatar Mijian Xu 😷
Browse files

Add taup

parent 0f6c6264
......@@ -18,3 +18,5 @@ doc/.texpadtmp/bqmail.out
doc/.texpadtmp/bqmail.synctex.gz
doc/.texpadtmp/bqmail.toc
bin/bqmail_conti
......@@ -8,11 +8,12 @@
# 2015/02/11
# 2015/04/29
# 2015/05/01
# 2015/09/26
#
def Usage():
print('Usage:')
print('python bqmail.py -Nnetwork -Sstation -Yyear1/month1/day1/year2/month2/day2 -Bsec_begin/sec_end -Cchannel -Llocation -cdatetimefile -Fformat head.cfg')
print('python bqmail.py -Nnetwork -Sstation -Yyear1/month1/day1/year2/month2/day2 -Bsec_begin/sec_end [-Cchannel] [-Plat/lon/phase] [-Llocation] [-cdatetimefile] [-Fformat] head.cfg')
print('-N -- Network.')
print('-S -- Station.')
print('-Y -- Date range.')
......@@ -29,8 +30,9 @@ def Usage():
import datetime
import os, re
import sys, getopt
from smtplib import SMTP
import time
import taup
import distaz
try:
import configparser
config = configparser.ConfigParser()
......@@ -40,7 +42,7 @@ except:
try:
opts,args = getopt.getopt(sys.argv[1:], "hN:S:C:Y:B:L:c:F:")
opts,args = getopt.getopt(sys.argv[1:], "hN:S:C:Y:B:L:c:F:P:")
except:
print('Arguments are not found!')
Usage()
......@@ -49,7 +51,7 @@ if opts == []:
Usage()
sys.exit(1)
isph = 0
iscustom = 0
isyrange = 0
chan = "BH?"
......@@ -74,6 +76,12 @@ for op, value in opts:
loca = value
elif op == "-F":
fformat = value
elif op == "-P":
stla = float(value.split('/')[0])
stlo = float(value.split('/')[1])
phase = value.split('/')[2]
isph = 1
mod=taup.TauPyModel(model='iasp91')
elif op == "-h":
Usage()
sys.exit(1)
......@@ -110,9 +118,6 @@ INST = config.get("info","INST")
EMAIL = config.get("info","EMAIL")
MEDIA = config.get("info","MEDIA")
ALTERNATEMEDIA = MEDIA
hosts = config.get("smtp","hosts")
port = config.get("smtp","port")
passwd = config.get("smtp","passwd")
if fformat.lower() == 'seed':
recipient = 'breq_fast@iris.washington.edu'
elif fformat.lower() == 'miniseed':
......@@ -150,14 +155,20 @@ else:
lon=float(evenum_split[8])
dep=float(evenum_split[9])
mw=float(evenum_split[10])
date = datetime.datetime(year,mon,day,hour,min,sec) + datetime.timedelta(seconds=btime)
dateend = datetime.datetime(year,mon,day,hour,min,sec) + datetime.timedelta(seconds=etime)
if datemin <= date <= datemax:
event.append([date.strftime('%Y'),date.strftime('%m'),date.strftime('%d'),date.strftime('%H'),date.strftime('%M'),date.strftime('%S'),dateend.strftime('%Y'),dateend.strftime('%m'),dateend.strftime('%d'),dateend.strftime('%H'),dateend.strftime('%M'),dateend.strftime('%S')])
head = ("From: %s\r\nTo: %s\r\n\r\n" % (EMAIL, recipient))
msg = head
evt_time = datetime.datetime(year,mon,day,hour,min,sec)
if datemin <= evt_time <= datemax:
if isph == 1:
dis = distaz.distaz(stla, stlo, lat, lon).delta
arr = mod.get_travel_times(source_depth_in_km=dep, distance_in_degree=dis, phase_list=[phase])
if len(arr) != 0:
arr_time = evt_time + datetime.timedelta(seconds=arr[0].time)
date = arr_time - datetime.timedelta(seconds=btime)
dateend = arr_time + datetime.timedelta(seconds=etime)
else:
date = evt_time + datetime.timedelta(seconds=btime)
dateend = evt_time + datetime.timedelta(seconds=etime)
event.append([date.strftime('%Y %m %d %H %M %S'), dateend.strftime('%Y %m %d %H %M %S')])
msg = ''
msg += '.NAME '+NAME+'\n'
msg += '.INST '+INST+'\n'
msg += '.MAIL\n'
......@@ -170,13 +181,11 @@ msg += '.ALTERNATE MEDIA '+ALTERNATEMEDIA+'\n'
msg += '.LABEL '+LABEL+'\n'
msg += '.END\n'
for row in event:
msg += station+' '+network+' '+row[0]+' '+row[1]+' '+row[2]+' '+row[3]+' '+row[4]+' '+row[5]+' '+row[6]+' '+row[7]+' '+row[8]+' '+row[9]+' '+row[10]+' '+row[11]+' 1 '+chan+' '+loca+'\n'
smtp = SMTP(host=hosts, port=port)
smtp.set_debuglevel(0)
smtp.login(EMAIL, passwd)
smtp.sendmail(EMAIL, recipient, msg)
smtp.quit()
time.sleep(5)
msg += station+' '+network+' '+row[0]+' '+row[1]+' 1 '+chan+' '+loca+'\n'
with open('tmp.bq','w') as fid_msg:
fid_msg.write(msg)
os.system('mail '+recipient+'<tmp.bq')
print("Successful sending the mail of "+network+"."+station+" to IRIS DMC!!!")
os.system('rm tmp.bq')
time.sleep(4)
......@@ -16,13 +16,12 @@ def Usage():
print('-H -- Request continuous wave by hour.')
print('-F -- File format (SEED or miniseed). Default: SEED')
print('head.cfg -- Config file.')
print('Example: ./bqmail_conti.py -Iex_sta.lst -Y2003/12/3/2003/12/3 -H24 head.cfg')
print('Example: ./bqmail_conti.py -Iex_sta.lst -Y2003/12/3/2003/12/4 -H24 head.cfg')
import datetime
import os, re
import sys, getopt
from smtplib import SMTP
import time
try:
import configparser
......@@ -91,9 +90,6 @@ INST = config.get("info","INST")
EMAIL = config.get("info","EMAIL")
MEDIA = config.get("info","MEDIA")
ALTERNATEMEDIA = MEDIA
hosts = config.get("smtp","hosts")
port = config.get("smtp","port")
passwd = config.get("smtp","passwd")
if fformat.lower() == 'seed':
recipient = 'breq_fast@iris.washington.edu'
elif fformat.lower() == 'miniseed':
......@@ -112,18 +108,13 @@ for stainfo in fid.readlines():
else:
sta.append([stainfo_sp[0], stainfo_sp[1], ''])
smtp = SMTP(host=hosts, port=port)
smtp.set_debuglevel(0)
smtp.login(EMAIL, passwd)
nowtime = datemin
while 1:
if nowtime >= datemax:
break
endtime = nowtime + datetime.timedelta(hours=timeval)
LABEL = 'IRIS_'+nowtime.strftime('%Y')+'.'+nowtime.strftime('%m')+'.'+nowtime.strftime('%d')+'.'+nowtime.strftime('%H')
head = ("From: %s\r\nTo: %s\r\n\r\n" % (EMAIL, recipient))
msg = head
msg = ''
msg += '.NAME '+NAME+'\n'
msg += '.INST '+INST+'\n'
msg += '.MAIL\n'
......@@ -136,9 +127,11 @@ while 1:
msg += '.LABEL '+LABEL+'\n'
msg += '.END\n'
for sta_row in sta:
msg += sta_row[1]+' '+sta_row[0]+' '+nowtime.strftime('%Y')+' '+nowtime.strftime('%m')+' '+nowtime.strftime('%d')+' '+nowtime.strftime('%H')+' '+nowtime.strftime('%M')+' 00.0 '+endtime.strftime('%Y')+' '+endtime.strftime('%m')+' '+endtime.strftime('%d')+' '+endtime.strftime('%H')+' '+endtime.strftime('%M')+' 00.0 1 '+chan+' '+sta_row[2]+'\n'
smtp.sendmail(EMAIL, recipient, msg)
time.sleep(5)
msg += sta_row[1]+' '+sta_row[0]+' '+nowtime.strftime('%Y %m %d %H %M %S')+' '+endtime.strftime('%Y %m %d %H %M %S')+' 1 '+chan+' '+sta_row[2]+'\n'
with open('tmp.bq','w') as fid_msg:
fid_msg.write(msg)
os.system('mail '+recipient+'<tmp.bq')
print("Successful sending the mail between "+nowtime.strftime('%Y')+'.'+nowtime.strftime('%m')+'.'+nowtime.strftime('%d')+'.'+nowtime.strftime('%H')+" and "+endtime.strftime('%Y')+'.'+endtime.strftime('%m')+'.'+endtime.strftime('%d')+'.'+endtime.strftime('%H')+"!!!")
nowtime = nowtime + datetime.timedelta(hours=timeval)
smtp.quit()
nowtime = nowtime + datetime.timedelta(hours=timeval)
time.sleep(4.5)
os.system('rm tmp.bq')
......@@ -3,7 +3,7 @@ mkdir ./bin
ln -s `pwd`/bqmail.py `pwd`/bin/bqmail
ln -s `pwd`/searchDMC.py `pwd`/bin/searchDMC
ln -s `pwd`/updateCatalog.py `pwd`/bin/updateCatalog
ln -s `pwd`/bqmail_continue.py `pwd`/bin/bqmail_continue
ln -s `pwd`/bqmail_conti.py `pwd`/bin/bqmail_conti
if [ `uname` == "Darwin" ]; then
echo "export PATH=`pwd`/bin:\$PATH" >> ~/.bash_profile
else
......
......@@ -8,7 +8,8 @@
# 2015/02/11
# 2015/04/29
# 2015/07/19
# 2015/09/26
#
import distaz, math
try:
......@@ -21,7 +22,7 @@ import sys, getopt
import glob
def Usage():
print('Usage: python searchDMC.py -NNetwork -Sstation -Rlon1/lon2/lat1/lat2 -Dlon/lat/dis1/dis2 -Yyear1/mon1/day1/year2/mon2/day2 -Cchannel -K')
print('Usage: python searchDMC.py -NNetwork -Sstation -Rlon1/lon2/lat1/lat2 -Dlat/lon/dis1/dis2 -Yyear1/mon1/day1/year2/mon2/day2 -Cchannel -K -G')
print('-N -- Network.')
print('-S -- Station.')
print('-R -- Search range.')
......@@ -32,7 +33,7 @@ def Usage():
try:
opts,args = getopt.getopt(sys.argv[1:], "hR:D:KY:C:N:S:")
opts,args = getopt.getopt(sys.argv[1:], "hR:D:KY:C:N:S:G")
except:
print('Arguments are not found!')
Usage()
......@@ -44,6 +45,7 @@ if opts == []:
iskml = 0
islalo = 0
isyrange = 0
isgmt = 0
lat_lon = ''
yrange = ''
chan = ''
......@@ -67,6 +69,8 @@ for op, value in opts:
isyrange = 1
elif op == "-C":
chan = 'chan='+value+'&'
elif op == "-G":
isgmt = 1
elif op == "-h":
Usage()
sys.exit(1)
......@@ -84,8 +88,8 @@ if lat_lon != '':
lalo = lon1+'_'+lon2+'_'+lat1+'_'+lat2
lalo_label = 'minlat='+lat1+'&maxlat='+lat2+'&minlon='+lon1+'&maxlon='+lon2+'&'
else:
lon = lat_lon_split[0]
lat = lat_lon_split[1]
lon = lat_lon_split[1]
lat = lat_lon_split[0]
dis1 = float(lat_lon_split[2])
dis2 = float(lat_lon_split[3])
lon1 = str(0)
......@@ -106,12 +110,12 @@ if isyrange:
day2 = yrange_sp[5]
yrange = 'timewindow='+year1+'/'+mon1+'/'+day1+'-'+year2+'/'+mon2+'/'+day2+'&'
url += network+station+lalo_label+yrange+chan
url = url[0:-1]
url += network+station+lalo_label+yrange+chan+'archive=on'
response = rq.urlopen(url)
html = str(response.read())
find_re = re.compile(r'<station\s.+?"/>',re.DOTALL)
stations = []
for info in find_re.findall(html):
sta_info = re.split('\w+="|"\s+?\w+="|"\s/>',info)
if sta_info == []:
......@@ -127,9 +131,33 @@ for info in find_re.findall(html):
if not islalo and lat_lon != '':
delta = distaz.distaz(float(lat),float(lon),float(stlat),float(stlon))
if dis1 < delta.delta < dis2:
print(netname+' '+staname+' '+stlat+' '+stlon+' '+yrange1+' '+yrange2)
stations.append([netname, staname, float(stlat), float(stlon), yrange1, yrange2])
else:
print(netname+' '+staname+' '+stlat+' '+stlon+' '+yrange1+' '+yrange2)
stations.append([netname, staname, float(stlat), float(stlon), yrange1, yrange2])
for station in stations:
print('%s %s %5.2f %5.2f %s %s' % (station[0], station[1], station[2], station[3], station[4], station[5]))
if isgmt:
with open('Stations.gmt', 'w+') as gmt:
if not islalo and lat_lon != '':
center = [float(lat), float(lon)]
elif islalo:
center = [(float(lat1)+float(lat2))/2, (float(lon1)+float(lon2))/2]
else:
netlats = []
netlons = []
for sta in stations:
netlats.append(sta[2])
netlons.append(sta[3])
center = [(max(netlats)+min(netlats))/2, (max(netlons)+min(netlons))/2]
gmt.write('#!/bin/sh\n')
gmt.write('ps=stations.ps\n\n')
gmt.write('gmt pscoast -Rg -JE%5.2f/%5.2f/5i -Ba30 -Dc -A10000 -Glightgray -Wthinnest -K > $ps\n' % (center[1], center[0]))
gmt.write('gmt psxy -R -K -O -J -St0.03i -Gred3 -W0.3p >> $ps << eof\n')
for sta in stations:
gmt.write('%5.2f %5.2f\n' % (sta[3], sta[2]))
gmt.write('eof\n')
if iskml:
if network != '':
......
package obspy.taup
==================
Copyright
---------
GLPv3
Copyright (c) 2011-2015 by:
* The ObsPy Dev Team
Overview
--------
Travel time calculation tool for ObsPy.
ObsPy is an open-source project dedicated to provide a Python framework for
processing seismological data. It provides parsers for common file formats and
seismological signal processing routines which allow the manipulation of
seismological time series (see Beyreuther et al. 2010, Megies et al. 2011).
The goal of the ObsPy project is to facilitate rapid application development
for seismology.
For more information visit http://www.obspy.org.
# -*- coding: utf-8 -*-
"""
obspy.taup - Ray Theoretical Travel Times and Paths
===================================================
:copyright:
The ObsPy Development Team (devs@obspy.org)
:license:
GNU Lesser General Public License, Version 3
(http://www.gnu.org/copyleft/lesser.html)
This package started out as port of the Java TauP Toolkit by [Crotwell1999]_ so
please look there for more details about the algorithms used and further
information. It can be used to calculate theoretical arrival times for
arbitrary seismic phases in a 1D spherically symmetric background model.
Furthermore it can output ray paths for all phases and derive pierce points of
rays with model discontinuities.
Basic Usage
-----------
Let's start by initializing a :class:`~obspy.taup.tau.TauPyModel` instance.
Models can be initialized by specifying the name of a model provided by ObsPy.
Names of available builtin models (in ``obspy/taup/data`` folder) are provided
by :const:`~obspy.taup.BUILTIN_TAUP_MODELS`.
>>> from obspy.taup import TauPyModel
>>> model = TauPyModel(model="iasp91")
Model initialization is a fairly expensive operation so make sure to do it only
if necessary. Custom built models can be initialized by specifying an absolute
path to a model in ObsPy's ``.npz`` model format instead of just a model name.
See below for how to build a ``.npz`` model file.
Travel Times
^^^^^^^^^^^^
The models' main method is the
:meth:`~obspy.taup.tau.TauPyModel.get_travel_times` method; as the name
suggests it returns travel times for the chosen phases, distance, source depth,
and model. Per default it returns arrivals for a number of phases.
>>> arrivals = model.get_travel_times(source_depth_in_km=55,
... distance_in_degree=67)
>>> print(arrivals) # doctest: +NORMALIZE_WHITESPACE
28 arrivals
P phase arrival at 647.036 seconds
pP phase arrival at 662.230 seconds
sP phase arrival at 668.702 seconds
PcP phase arrival at 674.868 seconds
PP phase arrival at 794.975 seconds
PKiKP phase arrival at 1034.106 seconds
pPKiKP phase arrival at 1050.535 seconds
sPKiKP phase arrival at 1056.727 seconds
S phase arrival at 1176.947 seconds
pS phase arrival at 1195.500 seconds
SP phase arrival at 1196.827 seconds
sS phase arrival at 1203.128 seconds
PS phase arrival at 1205.418 seconds
SKS phase arrival at 1239.088 seconds
SKKS phase arrival at 1239.107 seconds
ScS phase arrival at 1239.515 seconds
SKiKP phase arrival at 1242.400 seconds
pSKS phase arrival at 1260.313 seconds
sSKS phase arrival at 1266.919 seconds
SS phase arrival at 1437.417 seconds
PKIKKIKP phase arrival at 1855.260 seconds
SKIKKIKP phase arrival at 2063.556 seconds
PKIKKIKS phase arrival at 2069.749 seconds
SKIKKIKS phase arrival at 2277.833 seconds
PKIKPPKIKP phase arrival at 2353.930 seconds
PKPPKP phase arrival at 2356.420 seconds
PKPPKP phase arrival at 2358.925 seconds
SKIKSSKIKS phase arrival at 3208.154 seconds
If you know which phases you are interested in, you can also specify them
directly which speeds up the calculation as unnecessary phases are not
calculated. Please note that it is possible to construct *any* phases that
adhere to the naming scheme which is detailed later.
>>> arrivals = model.get_travel_times(source_depth_in_km=100,
... distance_in_degree=45,
... phase_list=["P", "PSPSPS"])
>>> print(arrivals) # doctest: +NORMALIZE_WHITESPACE
3 arrivals
P phase arrival at 485.204 seconds
PSPSPS phase arrival at 4983.023 seconds
PSPSPS phase arrival at 5799.225 seconds
Each arrival is represented by an :class:`~obspy.taup.helper_classes.Arrival`
object which can be queried for various attributes.
>>> arr = arrivals[0]
>>> arr.ray_param, arr.time, arr.incident_angle # doctest: +ELLIPSIS
(453.7188..., 485.2041..., 24.3968...)
Ray Paths
^^^^^^^^^
To also calculate the paths travelled by the rays to the receiver, use the
:meth:`~obspy.taup.tau.TauPyModel.get_ray_paths` method.
>>> arrivals = model.get_ray_paths(500, 130)
>>> arrival = arrivals[0]
The result is a NumPy record array containing ray parameter, time, distance
and depth to use however you see fit.
>>> arrival.path.dtype
dtype([('p', '<f8'), ('time', '<f8'), ('dist', '<f8'), ('depth', '<f8')])
Pierce Points
^^^^^^^^^^^^^
If you only need the pierce points of ray paths with model discontinuities,
use the :meth:`~obspy.taup.tau.TauPyModel.get_pierce_points` method which
results in pierce points being stored as a record array on the arrival object.
>>> arrivals = model.get_pierce_points(500, 130)
>>> arrivals[0].pierce.dtype
dtype([('p', '<f8'), ('time', '<f8'), ('dist', '<f8'), ('depth', '<f8')])
Plotting
--------
If ray paths have been calculated, they can be plotted using the
:meth:`~obspy.taup.tau.Arrivals.plot` method:
>>> arrivals = model.get_ray_paths(source_depth_in_km=500,
... distance_in_degree=130)
>>> arrivals.plot() # doctest: +SKIP
.. plot::
:width: 50%
:align: center
from obspy.taup import TauPyModel
TauPyModel().get_ray_paths(500, 130).plot()
Plotting will only show the requested phases:
>>> arrivals = model.get_ray_paths(
... source_depth_in_km=500,
... distance_in_degree=130,
... phase_list=["Pdiff", "Sdiff", "pPdiff", "sSdiff"])
>>> arrivals.plot() # doctest: +SKIP
.. plot::
:width: 50%
:align: center
from obspy.taup import TauPyModel
TauPyModel().get_ray_paths(
500, 130,
phase_list=["Pdiff", "Sdiff", "pPdiff", "sSdiff"]).plot()
Additionally, Cartesian coordinates may be used instead of a polar grid:
>>> arrivals = model.get_ray_paths(source_depth_in_km=500,
... distance_in_degree=130,
... phase_list=["ttbasic"])
>>> arrivals.plot(plot_type="cartesian") # doctest: +SKIP
.. plot::
:width: 75%
:align: center
from obspy.taup import TauPyModel
TauPyModel().get_ray_paths(
500, 130, phase_list=["ttbasic"]).plot(plot_type="cartesian")
More examples of plotting may be found in the :doc:`ObsPy tutorial
</tutorial/code_snippets/travel_time>`.
Phase naming in obspy.taup
--------------------------
.. note::
This section is a modified copy from the Java TauP Toolkit documentation so
all credit goes to the authors of that.
A major feature of ``obspy.taup`` is the implementation of a phase name parser
that allows the user to define essentially arbitrary phases through the Earth.
Thus, ``obspy.taup`` is extremely flexible in this respect since it is not
limited to a pre-defined set of phases. Phase names are not hard-coded into the
software, rather the names are interpreted and the appropriate propagation path
and resulting times are constructed at run time. Designing a phase-naming
convention that is general enough to support arbitrary phases and easy to
understand is an essential and somewhat challenging step. The rules that we
have developed are described here. Most of the phases resulting from these
conventions should be familiar to seismologists, e.g. ``pP``, ``PP``, ``PcS``,
``PKiKP``, etc. However, the uniqueness required for parsing results in some
new names for other familiar phases.
In traditional "whole-Earth" seismology, there are 3 major interfaces: the free
surface, the core-mantle boundary, and the inner-outer core boundary. Phases
interacting with the core-mantle boundary and the inner core boundary are easy
to describe because the symbol for the wave type changes at the boundary (i.e.,
the symbol ``P`` changes to ``K`` within the outer core even though the wave
type is the same). Phase multiples for these interfaces and the free surface
are also easy to describe because the symbols describe a unique path. The
challenge begins with the description of interactions with interfaces within
the crust and upper mantle. We have introduced two new symbols to existing
nomenclature to provide unique descriptions of potential paths. Phase names are
constructed from a sequence of symbols and numbers (with no spaces) that either
describe the wave type, the interaction a wave makes with an interface, or the
depth to an interface involved in an interaction.
1. Symbols that describe wave-type are:
* ``P`` - compressional wave, upgoing or downgoing; in the crust or mantle,
``p`` is a strictly upgoing *P*-wave in the crust or mantle
* ``S`` - shear wave, upgoing or downgoing, in the crust or mantle
* ``s`` - strictly upgoing *S*-wave in the crust or mantle
* ``K`` - compressional wave in the outer core
* ``I`` - compressional wave in the inner core
* ``J`` - shear wave in the inner core
2. Symbols that describe interactions with interfaces are:
* ``m`` - interaction with the Moho
* ``g`` appended to ``P`` or ``S`` - ray turning in the crust
* ``n`` appended to ``P`` or ``S`` - head wave along the Moho
* ``c`` - topside reflection off the core mantle boundary
* ``i`` - topside reflection off the inner core outer core boundary
* ``ˆ`` - underside reflection, used primarily for crustal and mantle
interfaces
* ``v`` - topside reflection, used primarily for crustal and mantle
interfaces
* ``diff`` appended to ``P`` or ``S`` - diffracted wave along the core
mantle boundary
* ``kmps`` appended to a velocity - horizontal phase velocity (see 10
below)
3. The characters ``p`` and ``s`` **always** represent up-going legs. An
example is the source to surface leg of the phase ``pP`` from a source at
depth. ``P`` and ``S`` can be turning waves, but always indicate downgoing
waves leaving the source when they are the first symbol in a phase name.
Thus, to get near-source, direct *P*-wave arrival times, you need to specify
two phases ``p`` and ``P`` or use the "*ttimes* compatibility phases"
described below. However, ``P`` may represent a upgoing leg in certain
cases. For instance, ``PcP`` is allowed since the direction of the phase is
unambiguously determined by the symbol ``c``, but would be named ``Pcp`` by
a purist using our nomenclature.
4. Numbers, except velocities for ``kmps`` phases (see 10 below), represent
depths at which interactions take place. For example, ``P410s`` represents a
*P*-to-*S* conversion at a discontinuity at 410km depth. Since the *S*-leg
is given by a lower-case symbol and no reflection indicator is included,
this represents a *P*-wave converting to an *S*-wave when it hits the
interface from below. The numbers given need not be the actual depth; the
closest depth corresponding to a discontinuity in the model will be used.
For example, if the time for ``P410s`` is requested in a model where the
discontinuity was really located at 406.7 kilometers depth, the time
returned would actually be for ``P406.7s``. The code would note that this
had been done. Obviously, care should be taken to ensure that there are no
other discontinuities closer than the one of interest, but this approach
allows generic interface names like “410” and “660” to be used without
knowing the exact depth in a given model.
5. If a number appears between two phase legs, e.g. ``S410P``, it represents a
transmitted phase conversion, not a reflection. Thus, ``S410P`` would be a
transmitted conversion from *S* to *P* at 410km depth. Whether the
conversion occurs on the down-going side or up-going side is determined by
the upper or lower case of the following leg. For instance, the phase
``S410P`` propagates down as an ``S``, converts at the 410 to a ``P``,
continues down, turns as a *P*-wave, and propagates back across the 410 and
to the surface. ``S410p`` on the other hand, propagates down as a ``S``
through the 410, turns as an *S*-wave, hits the 410 from the bottom,
converts to a ``p`` and then goes up to the surface. In these cases, the
case of the phase symbol (``P`` vs. ``p``) is critical because the direction
of propagation (upgoing or downgoing) is not unambiguously defined elsewhere
in the phase name. The importance is clear when you consider a source depth
below 410 compared to above 410. For a source depth greater than 410 km,
``S410P`` technically cannot exist while ``S410p`` maintains the same path
(a receiver side conversion) as it does for a source depth above the 410.
The first letter can be lower case to indicate a conversion from an up-going
ray, e.g., ``p410S`` is a depth phase from a source at greater than 410
kilometers depth that phase converts at the 410 discontinuity. It is
strictly upgoing over its entire path, and hence could also be labeled
``p410s``. ``p410S`` is often used to mean a reflection in the literature,
but there are too many possible interactions for the phase parser to allow
this. If the underside reflection is desired, use the ``pˆ410S`` notation
from rule 7.
6. Due to the two previous rules, ``P410P`` and ``S410S`` are over specified,
but still legal. They are almost equivalent to ``P`` and ``S``,
respectively, but restrict the path to phases transmitted through (turning
below) the 410. This notation is useful to limit arrivals to just those that
turn deeper than a discontinuity (thus avoiding travel time curve
triplications), even though they have no real interaction with it.
7. The characters ``ˆ`` and ``v`` are new symbols introduced here to represent
bottom-side and top-side reflections, respectively. They are followed by a
number to represent the approximate depth of the reflection or a letter for
standard discontinuities, ``m``, ``c`` or ``i``. Reflections from
discontinuities besides the core-mantle boundary, ``c``, or inner-core
outer-core boundary, ``i``, must use the ``ˆ`` and ``v`` notation. For
instance, in the TauP convention, ``pˆ410S`` is used to describe a
near-source underside reflection. Underside reflections, except at the
surface (``PP``, ``sS``, etc.), core-mantle boundary (``PKKP``, ``SKKKS``,
etc.), or outer-core-inner-core boundary (``PKIIKP``, ``SKJJKS``,
``SKIIKS``, etc.), must be specified with the ``ˆ`` notation. For example,
``Pˆ410P`` and ``PˆmP`` would both be underside reflections from the 410km
discontinuity and the Moho, respectively. The phase ``PmP``, the traditional
name for a top-side reflection from the Moho discontinuity, must change
names under our new convention. The new name is ``PvmP`` or ``Pvmp`` while
``PmP`` just describes a *P*-wave that turns beneath the Moho. The reason
why the Moho must be handled differently from the core-mantle boundary is
that traditional nomenclature did not introduce a phase symbol change at the