# Benchmark and Model Zoo ## CNN-based (w/ ImageNet-1k pretrained) ### Faster R-CNN | Backbone | Lr Schd | box mAP (minival) | #params | FLOPs | config | log | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-ResNet50 | 1x | 40.8 | 69M | 284G | [config](configs/cbnet/faster_rcnn_cbv2d1_r50_fpn_1x_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.log.json)| [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.pth.zip)| ### Cascade R-CNN (1600x1400) | Backbone | Lr Schd | box mAP (minival/test-dev)| #params | FLOPs | config | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Res2Net101-DCN | 20e | 53.7/- | 141M | 429G | [config](configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_coco.pth.zip)| | DB-Res2Net101-DCN | 20e + 1x (swa) | 54.8/55.3 | 141M | 429G | [config (test only)](configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_coco_swa.pth.zip) | ### Cascade R-CNN w/ 4conv1fc (1600x1400) | Backbone | Lr Schd | box mAP (minival/test-dev)| #params | FLOPs | config | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Res2Net101-DCN | 20e | 54.1/- | 146M | 774G | [config](configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.pth.zip)| | DB-Res2Net101-DCN | 20e + 1x (swa) | 55.3/55.6 | 146M | 774G | [config (test only)](configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco_swa.pth.zip) | **Notes**: - For SWA training, please refer to [SWA Object Detection](https://github.com/hyz-xmaster/swa_object_detection) ## Transformer-based (w/ ImageNet-1k pretrained) ### Mask R-CNN | Backbone | Lr Schd | box mAP (minival) | mask mAP (minival) | #params | FLOPs | config | log | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Swin-T | 3x | 50.2 | 44.5 | 76M | 357G | [config](configs/cbnet/mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_480-800_adamw_3x_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.log.json) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip) | ### Cascade Mask R-CNN w/ 4conv1fc | Backbone | Lr Schd | box mAP (minival)| mask mAP (minival)| #params | FLOPs | config | log | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Swin-T | 3x | 53.6 | 46.2 | 114M | 836G | [config](configs/cbnet/cascade_mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.log.json) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip) | ### Cascade Mask R-CNN w/ 4conv1fc (1600x1400) | Backbone | Lr Schd | box mAP (minival/test-dev)| mask mAP (minival/test-dev)| #params | FLOPs | config | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Swin-S | 3x | 56.3/56.9 | 48.6/49.1 | 156M | 1016G | [config](configs/cbnet/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth.zip)| ## Transformer-based (w/ ImageNet-22k pretrained) ### HTC (1600x1400) | Backbone | Lr Schd | box mAP (minival/test-dev) | mask mAP (minival/test-dev) | #params | FLOPs | config | model | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Swin-B | 20e | 57.9/- | 50.2/- | 231M | 1004G | [config](configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_adamw_20e_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_adamw_20e_coco.pth.zip) | | DB-Swin-B | 20e + 1x (swa) | 58.2/58.6 | 50.4/51.1 | 231M | 1004G | [config (test only)](configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_adamw_20e_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_adamw_20e_coco_swa.pth.zip)| ### HTC (bbox head w/ 4conv1fc) (1600x1400) *Compared to regular HTC, our HTC uses 4conv1fc in bbox head.* | Backbone | Lr Schd | box mAP (minival/test-dev) | mask mAP (minival/test-dev) | #params | FLOPs | config | model | | :---: |:---: | :---: | :---: | :---: | :---: | :---: | :---: | | DB-Swin-B | 20e | 58.4/58.7 | 50.7/51.1 | 235M | 1348G | [config](configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.pth.zip) | | DB-Swin-L | 1x | 59.1/59.4 | 51.0/51.6 | 453M | 2162G | [config](configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip) | | DB-Swin-L (TTA) | 1x | 59.6/60.1 | 51.8/52.3 | 453M | - | [config](configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py) | [github](https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip) | TTA denotes test time augmentation. **Notes**: - **Pre-trained models of Swin Transformer can be downloaded from [Swin Transformer for ImageNet Classification](https://github.com/microsoft/Swin-Transformer)**.