1. 22 5月, 2021 1 次提交
    • suilin0432's avatar
      . · c2578884
      suilin0432 创作于
      c2578884
  2. 15 5月, 2021 1 次提交
    • suilin0432's avatar
      add · f6ee5c88
      suilin0432 创作于
      f6ee5c88
  3. 14 5月, 2021 1 次提交
    • suilin0432's avatar
      , · 8a0826db
      suilin0432 创作于
      8a0826db
  4. 10 5月, 2021 1 次提交
  5. 09 5月, 2021 3 次提交
    • suilin0432's avatar
      . · a9c4f2f0
      suilin0432 创作于
      a9c4f2f0
    • suilin0432's avatar
      . · c146dd70
      suilin0432 创作于
      c146dd70
    • suilin0432's avatar
      add · b1bb526c
      suilin0432 创作于
      b1bb526c
  6. 07 5月, 2021 5 次提交
  7. 06 5月, 2021 2 次提交
  8. 04 5月, 2021 3 次提交
  9. 02 5月, 2021 1 次提交
  10. 30 4月, 2021 1 次提交
  11. 29 4月, 2021 1 次提交
    • suilin0432's avatar
      ... · c7e7b4b9
      suilin0432 创作于
      c7e7b4b9
  12. 28 4月, 2021 1 次提交
  13. 26 4月, 2021 2 次提交
  14. 24 4月, 2021 7 次提交
  15. 23 4月, 2021 2 次提交
  16. 22 4月, 2021 8 次提交
    • suilin0432's avatar
      update · a8d1cee4
      suilin0432 创作于
      a8d1cee4
    • Elbek Khoshimjonov's avatar
      Sample image instead of dataset for exporting model · c3b671e2
      Elbek Khoshimjonov 创作于
      Summary:
      [export_model.py](https://github.com/facebookresearch/detectron2/blob/master/tools/deploy/export_model.py)
       requires to process sample input, and current implementation requires whole dataset to be imported, it is not a easy way for custom models, so instead of dataset, user can pass a sample image.
      
      Pull Request resolved: https://github.com/facebookresearch/detectron2/pull/2931
      
      Reviewed By: alexander-kirillov
      
      Differential Revision: D27903407
      
      Pulled By: ppwwyyxx
      
      fbshipit-source-id: 1e5d9b5770d2a8200abc46aad01121f0012cf5e7
      c3b671e2
    • Marc Szafraniec's avatar
      Add Confidence Based CSE data samplers · 7adca49d
      Marc Szafraniec 创作于
      Summary: Add Confidence Based CSE data samplers (coarse segm only for the moment)
      
      Reviewed By: vkhalidov
      
      Differential Revision: D27188563
      
      fbshipit-source-id: f220448e87c0f31e25c1c3f98d7061c16aa68b6c
      7adca49d
    • Marc Szafraniec's avatar
      Adapt CSE Bootstrapping to use ground truth category data · 9a4fc562
      Marc Szafraniec 创作于
      Summary: Adapt CSE Bootstrapping to use ground truth category data
      
      Reviewed By: vkhalidov
      
      Differential Revision: D27045679
      
      fbshipit-source-id: 7130931a4cb66e8a9a015309814410f5f8ded171
      9a4fc562
    • Marc Szafraniec's avatar
      Create CSE Base and Uniform Data Samplers · 5727791f
      Marc Szafraniec 创作于
      Summary: Create CSE Base and Uniform Data Samplers
      
      Reviewed By: vkhalidov
      
      Differential Revision: D26691586
      
      fbshipit-source-id: 2688698d612220b4047322ecd91df24186f2efb5
      5727791f
    • Marc Szafraniec's avatar
      Refactor image transform · b990b71f
      Marc Szafraniec 创作于
      Summary:
      Refactor image transform so it does nothing else than the resizing.
      
      Before it was a bit confusing because it was resizing AND assuming that the input data was RGB and in NHWC format, and applying corresponding transforms, which depends on the input dataset
      
      Reviewed By: vkhalidov
      
      Differential Revision: D27081805
      
      fbshipit-source-id: e12a23ff843e24f86feccf9f0dfd00cf628a5a5b
      b990b71f
    • Marc Szafraniec's avatar
      Correct Image List Dataset · 6e029299
      Marc Szafraniec 创作于
      Summary: Correct Image List Dataset to use one image with 3 channels instead of 3 images with 1 channel
      
      Reviewed By: vkhalidov
      
      Differential Revision: D27080295
      
      fbshipit-source-id: 4b90f02302858af800d6e0514972a002f92a3a3d
      6e029299
    • Marc Szafraniec's avatar
      Add animal category to bootstrapping datasets · 3634173a
      Marc Szafraniec 创作于
      Summary:
      In the bootstrapping datasets, we might not have annotated images, but we often know very well to which animal categories they belong. This diff aims to pass down this information.
      
      For the details of the Instagram Datasets and `build_fb`, check the following diff D27045763
      
      Category to class mapping should look like that and aims to convert "layman's terms" categories, used in the datasets, to category classes (and then to mesh names with CLASS_TO_MESH_NAME_MAPPING)
      
      {F506421983}
      
      Reviewed By: vkhalidov
      
      Differential Revision: D27045669
      
      fbshipit-source-id: 3865c36e622813b7591a3a969a2fa58295a48744
      3634173a