import torch.nn as nn import torch.nn.functional as F class RNNAgent(nn.Module): def __init__(self, input_shape, args): super(RNNAgent, self).__init__() self.args = args self.fc1 = nn.Linear(input_shape, args.rnn_hidden_dim) self.rnn = nn.GRUCell(args.rnn_hidden_dim, args.rnn_hidden_dim) self.fc2 = nn.Linear(args.rnn_hidden_dim, args.n_actions) def init_hidden(self): # make hidden states on same device as model return self.fc1.weight.new(1, self.args.rnn_hidden_dim).zero_() def forward(self, inputs, hidden_state): x = F.relu(self.fc1(inputs)) h_in = hidden_state.reshape(-1, self.args.rnn_hidden_dim) h = self.rnn(x, h_in) q = self.fc2(h) return q, h